摘 要: | 以壶瓶枣为对象探讨用机器视觉和近红外光谱技术检测壶瓶枣内外品质。通过图像处理技术获取壶瓶枣投影面的边缘提取图像,然后使用最小外接矩形法求得图像的像素点个数,以此求得壶瓶枣投影面的面积。采用MSC对壶瓶枣近红外光谱进行预处理,然后分别采用偏最小二乘法(PLS)、主成分回归(PCR)和偏最小二成支持向量机(LS-SVM)3种建模方式对壶瓶枣可溶性固形物的含量进行预测。结果表明,使用LS-SVM模型获得了最优的预测结果,其预测集的相关系数和均方根误差分别为0.9901和0.328。研究表明,机器视觉结合近红外光谱技术能对壶瓶枣内外品质进行综合检测。
|