摘 要: | 针对土壤Cd高光谱遥感定量反演中的机理性不足及数据冗余问题,提出一种基于有机质特征谱段的反演方法。该方法首先提取土壤光谱中对重金属Cd具有吸附作用的有机质特征谱段,进而通过竞争性自适应重加权采样法(Competitive adaptive reweighted sampling,CARS)优选特征谱段,采用偏最小二乘回归法(Partial least squares regression,PLSR)建立重金属Cd的反演模型,并利用郴州矿区土壤实验室光谱数据和哈密黄山南矿区野外光谱数据进行方法验证。研究表明:有机质特征谱段提取在降低数据冗余的同时提高了重金属Cd的反演精度,CARS算法相对于相关系数法(Correlation coefficient,CC)和遗传算法(Genetic algorithm,GA)特征选择具有更高的反演精度,基于有机质特征谱段的CARS-PLSR算法在土壤实验室光谱和野外实测光谱所得验证精度R2分别为0.94和0.80,表明该算法对于实验室和野外光谱均具有一定适用性。研究可为土壤重金属含量高光谱反演的特征波段选择和算法优选提供参考。
|