首页 | 本学科首页   官方微博 | 高级检索  
     

基于ForcTT模型的开化县油菜花期预报
引用本文:丁丽华,顾振海,余丽萍,何 敏. 基于ForcTT模型的开化县油菜花期预报[J]. 中国农学通报, 2019, 35(22): 91-95. DOI: 10.11924/j.issn.1000-6850.casb18040085
作者姓名:丁丽华  顾振海  余丽萍  何 敏
作者单位:1.开化县气象局;2.衢州市气象局
基金项目:浙江省气象局青年项目“县级旅游气象服务体系研究与应用”(2016QN10)。
摘    要:
[目的]为及时向政府和游客提供准确的花期预报,指导乡村旅游活动,[方法]应用2004-2015年油菜生育期观测资料和地面气象观测资料,建立基于ForcTT模型的有效积温法则和逐步回归两种不同的预测模型。[结果]结果表明:基于ForcTT模型的有效积温法则有效避免了有效积温法则中各生育期不确定性的问题。两种预测模型得到的近三年普花期预测值结果相近,与实况值偏差略大,但能准确体现前后年的花期变化。经异地调查发现,积温模型更能体现花期在不同区域的时间差异。[结论]由此,基于ForcTT模型的有效积温法则可作为油菜花期预报的有效手段,为开展更有效的旅游气象服务提供技术支撑。

关 键 词:森林生态系统  森林生态系统  碳库  氮沉降  响应  
收稿时间:2018-04-18
修稿时间:2019-07-06

Prediction of Rape Florescence Based on ForcTT Model in Kaihua
Abstract:
[Objective] This study was completed to provide timely and accurate forecast to the government and tourists, guide rural tourism activities. [Method]Two different prediction models , the effective accumulated temperature rule based on the ForcTT model and the stepwise regression, were established based on the observation data of rape growth period and ground meteorological observation data from 2004 to 2015. [Result] The results showed that: The effective accumulated temperature rule based on the ForcTT model effectively avoided the uncertainty of each growth period in the law of effective accumulated temperature. The results of the two prediction models were approximate to the prediction of florescence for the most recent three years, which were biased from the actual value, but ccould accurately reflect the changes of the florescence of the years before and after. The results showed that the accumulated temperature model could reflect the time difference of flowering period in different regions effectively. [Conclusion]Therefore, the effective accumulated temperature law based on the ForcTT model could serve as an effective means for the prediction of rape flower period and provide technical support for the development of more effective tourism meteorological services.
Keywords:ForcTT model   the accumulated temperature threshold   stepwise regression   prediction of florescence
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农学通报》浏览原始摘要信息
点击此处可从《中国农学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号