首页 | 本学科首页   官方微博 | 高级检索  
     

基于遥感影像和决策树算法的土壤制图
作者姓名:韩浩武  许伟  黄魏  陈荣  周紫燕
作者单位:华中农业大学资源与环境学院
摘    要:传统土壤信息获取方法已经无法完全满足当前各领域对土壤数据的需求,如何结合新的技术提高土壤普查效率,获取高精度土壤图成为了现阶段的研究重点。本研究综合利用高分二号遥感影像提取的遥感光谱指数以及DEM数据提取的地形因子,通过决策树算法进行数据挖掘,获取各土壤类型的土壤—环境规则,然后利用SoLIM结合土壤—环境规则进行推理制图,获得研究区的土壤类型分布图。结果表明,预测土壤图总体精度为88%,高于传统土壤图的精度72%,且在三种不同的采样方式(均匀采样、横截面采样和主观采样)下土壤预测精度分别为89%、88%、86%,均高于传统土壤图。这说明,预测土壤图比传统土壤图更能反映土壤类型空间差异,且预测土壤图在表达土壤类型整体空间分布信息的同时也可捕捉到土壤类型与地貌类型的耦合关系。

关 键 词:环境因子  遥感影像  决策树  数据挖掘  土壤—环境推理模型(SoLIM)
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号