首页 | 本学科首页   官方微博 | 高级检索  
     

实测拟合Mironov介电常数的SMOS对土壤水分反演精度的优化
引用本文:马战林,杨娜,崔学皓. 实测拟合Mironov介电常数的SMOS对土壤水分反演精度的优化[J]. 贵州农业科学, 2017, 45(10)
作者姓名:马战林  杨娜  崔学皓
作者单位:河南理工大学测绘与国土信息工程学院,河南焦作,454000
基金项目:国家自然科学基金青年基金项目“非均质平原农区SMOS土壤水分反演算法优化研究”,中国科学院数字地球重点实验室开放基金项目“生长季农田浅根层土壤水分动态模拟”,河南省教育厅高等学校重点科研项目“基于多源数据同化的豫西北干旱灾害预警与预报”,河南省教育厅省重大科技攻关计划项目“基于典型地类持水模式的SMOS浅根层土壤水分反演方法研究”
摘    要:为对农业干旱预测方法和提高SMOS的反演精度参考,介于Mironov介电常数与土壤水分的变异趋势呈相似规律,尝试利用区域性实测数据非线性拟合二者的量化关系,进而由SMOS L2介电常数直接反求土壤水分、快速改善其反演精度。结果表明:在不考虑空间异质性的情况下,该方法将绝对误差由0.095~0.112降低至0.071~0.072。说明,以真实观测作为先验辅助信息,采用优化参数的方式能够有效提升SMOS对土壤水分的整体反演精度。

关 键 词:Mironov介电常数  SMOS  土壤水分  非线性拟合  干旱预测

Optimization for Inversion Accuracy of Soil Moisture from SMOS by Fitting Mironov Dielectric Constant
MA Zhanlin,YANG Na,CUI Xuehao. Optimization for Inversion Accuracy of Soil Moisture from SMOS by Fitting Mironov Dielectric Constant[J]. Guizhou Agricultural Sciences, 2017, 45(10)
Authors:MA Zhanlin  YANG Na  CUI Xuehao
Abstract:The quantitative relation between Mironov dielectric constant and soil moisture is analyzed in a nonlinear fitting pattern by using regional measured data based on the similar variation trend of Mironov dielectric constant and soil moisture,and then the soil moisture is directly calculated from SMOS L2 dielectric constant to provide a reference to improve the method of agriculture drought prediction SMOS inversion accuracy rapidly.Results:The absolute error can be reduced from 0.095~0.112 to 0.071~0.072.Significantly without regard to the common condition of spatial heterogeneity.The method can effectively improve the overall inversion accuracy of SMOS soil moisture by the pattern of taking actual observation as the prior supplementary information and optimizing parameters.
Keywords:Mironov dielectric constant  SMOS  soil moisture  nonlinear fitting  drought prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号