首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Etiology of asparagus replant-bound early decline
Authors:Wim J Blok  Gerrit J Bollen
Institution:(1) Department of Phytopathology, Wageningen Agricultural University, P.O. Box 8025, 6700 EE Wageningen, The Netherlands
Abstract:Asparagus replant-bound early decline (ARED) was characterized and its etiology was elucidated in experiments under greenhouse and field conditions. Selective soil treatments were used to differentiate between autotoxic compounds and soil-borne pathogens as causal agents. In greenhouse experiments, there were symptoms of ARED within 12—15 weeks. Asparagus plants grown in soil formerly used for asparagus (asparagus soil) showed brown lesions on primary and secondary roots, and many secondary roots had rotted. Root weights of plants grown in asparagus soil were lower than those of plants grown in fresh soil.Fusarium oxysporum f. sp.asparagi (Foa) was by far the most common species among the fungi isolated from roots with lesions. Under greenhouse and field conditions, there were similar symptoms, which indicates that the results obtained under greenhouse conditions are similar to those in the field. The vertical distribution of the ARED-causing factor(s) was studied in a greenhouse experiment in which plants were grown in soil from three layers: 0–30, 30–60, and 60–90 cm. For all four asparagus soils tested, there were ARED symptoms and similar disease severity in samples from all three depths. The causal factor persisted at least 11 years after soil was no longer used for asparagus. When asparagus soil was diluted with fresh soil to give mixtures with 100%, 80%, 50%, 20% and 0% asparagus soil, disease severity did not decrease with increasing dilution of the asparagus soil from 100% to 20%. Disease severity of all mixtures with asparagus soil was significantly higher than that for fresh soil. The results imply that ARED is caused by a pathogen colonizing the soil rather than inhibition by autotoxins released from residues of the preceding asparagus crop. This conclusion is supported by the results of greenhouse and outdoor experiments with heat and fungicide treatments of soil. ARED was nullified by heat treatments of 30 min at 55 or 60 °C but not 45 and 50 °C, eliminating autotoxins as an important cause of ARED because they are heat-stable. Foa is eliminated by a 30-min soil treatment at 55–60 °C but not 50 °C. Prochloraz, known for its toxicity toF. oxysporum, also nullified ARED. Disease severity level was related to the density of Foa in soil. The results provide conclusive evidence thatF. oxysporum f. sp.asparagi is the main cause of ARED in the Netherlands, which largely removes the need to discriminate between early decline and replant-bound early decline, because Foa is the main cause of both diseases.
Keywords:allelopathy  asparagus decline  Asparagus officinalis  asparagus replant disease  autotoxins  etiology  fungicide treatments  Fusarium oxysporum f  sp  asparagi  heat treatments  Phoma terrestris
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号