首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular genetics of behaviour: research strategies and perspectives for animal production
Authors:Pierre Mormède
Institution:Laboratoire de Neurogénétique et Stress, INRA-Université Victor Segalen Bordeaux 2, Institut François Magendie, 33077 Bordeaux cedex, France
Abstract:Genetic factors are undoubtedly involved in inter-individual variability of the behaviours that may be important for livestock production, as shown by pedigree studies, comparison of genetic stocks raised in the same environment, and selection experiments. The knowledge of gene polymorphisms responsible for genetic variability would increase the efficiency of selection, as shown for instance by the identification of the ryanodine receptor gene that harbours the mutations responsible for the porcine stress syndrome, that allows the eradication of the susceptibility allele. One strategy is to screen systematically the genes that are known to be involved in regulation of behaviour (functional candidate genes). This strategy is however very difficult for most behavioural traits, since behaviour is an emerging function from the whole brain/body and the molecular pathways involved in genetic variability are very poorly understood. Another strategy is to investigate linkage between trait variation and genetic markers in a segregating population (usually an intercross or backcross between two strains or breeds contrasting for the trait under study). It allows the detection of genomic regions influencing that trait (quantitative trait loci or QTL), and further investigation aims at the identification of the gene(s) located in each of these regions and the molecular polymorphisms involved in phenotypic variation. Although many QTL have been published for behavioural traits in experimental animals, very few examples are available where strong candidate genes have been identified. Further progress will be very much dependent upon the careful definition of behavioural traits to be studied (including their importance for animal production), on the reliability of their measurement in a large number of animals and on the efficient mastering of environmental factors of variability. The fast increase in the knowledge of genome sequence in several species will undoubtedly facilitate the application to farm animal species of the knowledge obtained in model organisms, as well as the use of model organisms to explore candidate genes detected by QTL studies in farm animals.
Keywords:Behaviour  Molecular genetics  Quantitative trait loci  Gene polymorphism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号