首页 | 本学科首页   官方微博 | 高级检索  
     检索      

施药喷嘴分级可行性及方法研究
引用本文:周晴晴,薛新宇,周良富,孙涛,田志伟.施药喷嘴分级可行性及方法研究[J].农业工程学报,2019,35(9):66-72.
作者姓名:周晴晴  薛新宇  周良富  孙涛  田志伟
作者单位:农业农村部南京农业机械化研究所
基金项目:国家重点研发计划-研发和完善农业航空植保智能化装备关键部件(2016YFD0200702);国家重点研发计划-农用航空作业关键技术研究与装备研发(2017YFD0701000);中国农业科学院基本科研业务费专项(S201807)。
摘    要:针对国产农用喷嘴的雾滴粒径分级数据及方法缺失的问题,该文依据ASAE S572.1标准,以NJS-01植保低速风洞为平台建立了雾滴粒径标准测试方法。在规范的测试条件和测量程序下,以Teejet 11001、11003、11006、8008和6510不锈钢芯扇形喷嘴为参考喷嘴,测试了Teejet F110、Lurmark F110、国产Lanao F110、YZS80、YZK80等24种待分类喷嘴在0.2、0.3、0.4 MPa下的雾滴粒径。在此基础上建立了参考喷嘴的雾滴粒径分级参考图,提出了基于该参考图的喷嘴分级方法。同时用Teejet、Lurmark标准扇形雾喷嘴的测试数据和厂家提供的分级结果,验证了喷嘴分级方法的正确性和适用性。该文运用该分级方法对国产Lanao F110、YZS80、YZK80系列喷嘴在不同压力下的雾滴粒径进行分级,可为该类型国产喷嘴的选型和应用提供参考。

关 键 词:喷嘴  喷雾  农药  雾滴谱  喷嘴分级  粒径测试  风洞
收稿时间:2018/11/1 0:00:00
修稿时间:2019/4/15 0:00:00

Feasibility and method of classification of spraying nozzle
Zhou Qingqing,Xue Xinyu,Zhou Liangfu,Sun Tao and Tian Zhiwei.Feasibility and method of classification of spraying nozzle[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(9):66-72.
Authors:Zhou Qingqing  Xue Xinyu  Zhou Liangfu  Sun Tao and Tian Zhiwei
Institution:Nanjing Agricultural Mechanization Research Institute, Ministry of Agriculture and Rural Areas, Nanjing 210014, China,Nanjing Agricultural Mechanization Research Institute, Ministry of Agriculture and Rural Areas, Nanjing 210014, China,Nanjing Agricultural Mechanization Research Institute, Ministry of Agriculture and Rural Areas, Nanjing 210014, China,Nanjing Agricultural Mechanization Research Institute, Ministry of Agriculture and Rural Areas, Nanjing 210014, China and Nanjing Agricultural Mechanization Research Institute, Ministry of Agriculture and Rural Areas, Nanjing 210014, China
Abstract:Measurement result of droplet size is affected by many factors such as spray liquid property, flow rate, spray pressure, orifice shape, and so on. Droplet size measurement results are different under different test methods. That means the droplet size measurement results of nozzles under different conditions have no significance of comparison and direct utilization. Nozzle classification based on droplet spectrum ignores the difference of laboratory data and obtain the same or similar nozzle classification results. However, nozzle classification method and test criteria have not been popularized or implemented in China, which leads to a fact that the nozzles made in China can not be classified or be compared with international nozzles. If ASAE nozzle classification reference map is used directly, the classification result will be misjudged. In order to solve the problem of the lack of data and methods of droplet size classification for domestic agricultural nozzles, a standard test method for droplet size was established in NJS-01 plant protection low speed wind tunnel based on ASAE S572.1 standard. Test conditions were as follows: airflow speed was 6.7 m/s and sampling distance was 30.5 cm. Sampling area was the whole spray section of laser scanning at a certain sampling distance. After determined standard test conditions and procedures, five reference nozzles were tested, namely Teejet 11001, 11003, 11006, 8008 and 6510 stainless steel core fans nozzle. On this basis, a reference map for droplet size classification of reference nozzles was established, and a nozzle classification method based on the reference map was proposed. According to the reference map of droplet size classification in NJS laboratory, droplet size was divided into 6 grades: very fine (VF), fine (F), medium (M), coarse (C), very coarse (VC) and extremely coarse (XC). Due to the limitation of measurement range and accuracy of DP-02 laser particle size analyzer, in this paper, we only considered the droplet size classification of common plant protection nozzles, and did not measure IP-16 and 6515 reference nozzles, which correspond for categories of extremely fine/very fine (XF/VF) and extremely coarse/ultra-coarse (XC/UC). Droplet sizes of 24 to be classified nozzles were measured at the pressure of 0.2, 0.3 and 0.4 MPa. To be classified nozzles were Teejet F110 (01-08), Lurmark F110 (015-05), Lanao F110 (015-05), YZS80 (02-04) and YZK80 (02-04). Nozzles were classified according to the position of droplet spectrum polyline on the reference map. Compared with test classification levels of Teejet F110 (01-08) and Lurmark F110 (015-05) standard fan-shaped spray nozzles and nominal nozzle levels provided by manufacturers, our results showed that most of the test levels of nozzles were in accordance with the nominal nozzle levels provided by manufacturers, except for the inconsistencies of classification levels of individual nozzles under individual pressures, which could indicate that the reference map of droplet size classification established by NJS wind tunnel laboratory and the nozzle classification method based on droplet spectrum were correct and adaptable. Droplet sizes of Lanao F110, YZS80 and YZK80 nozzles under different pressures were classified by this classification method, and the classification level of nozzles increased with the increase of nozzle type (nozzle aperture), and decreased with the increase of spray pressure. The same type of nozzles can be classified into different levels under different spray pressures. Droplet size was influenced by geometry shape of nozzle, the order of droplet size from large to small was YZS80, F110 and YZK80 under the same nozzle number and pressure. The results of classification were instructive for perfecting technical parameters of domestic nozzles, making it easy for users to choose nozzle type and to determine working pressure.
Keywords:nozzles  spraying  pesticides  droplet spectrum  nozzle classification  droplet measurement  wind tunnel
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号