首页 | 本学科首页   官方微博 | 高级检索  
     

基于时空信息比较的温室环境传感器故障识别
引用本文:王纪章,贺通,周金生,赵丽伟,王建平,李萍萍. 基于时空信息比较的温室环境传感器故障识别[J]. 农业机械学报, 2018, 49(2): 319-326
作者姓名:王纪章  贺通  周金生  赵丽伟  王建平  李萍萍
作者单位:江苏大学,江苏大学,江苏大学,中国农业机械化科学研究院,江苏大学,江苏大学;南京林业大学
基金项目:江苏省农业自主创新项目(CX(15)1016)、中国博士后基金项目(2015M580400)、江苏省博士后基金项目(1501112B)、江苏省科技支撑计划项目(BE2014406)、江苏省高等学校自然科学研究重大项目(17KJA416002)和江苏省高校优势学科建设工程项目(苏政办发教[2014]37号)
摘    要:为了提高温室环境测控系统中传感器数据的准确性,针对温室环境参数变化的时间相关性和空间相似性特点,提出了一种基于主成分分析(Principal component analysis,PCA)的故障检测与基于时空信息比较的温室环境监测系统的传感器故障识别方法。首先利用基于PCA的传感器故障检测方法,通过监控统计量T2和SPE的变化实现传感器系统故障检测;再针对检测出故障的传感器节点,对该时刻传感器节点采用基于时空特性的节点信息比较实现不同传感器的故障识别。分别对比基于时间尺度、空间尺度、时空尺度的节点信息比较方法对传感器故障识别的影响进行了分析与试验验证,验证结果表明:基于PCA的传感器故障检测方法能够有效地实现对传感器系统故障的初步检测,提出的基于时空信息比较的传感器故障识别方法,融合考虑时间尺度和空间尺度的节点信息,能够有效地实现传感器具体故障定位;所建立的传感器故障识别方法检测正确率CDR为98.37%、平均虚警率FAR为1.72%,较传统的传感器故障识别方法检测正确率CDR提高了22.067个百分点,而平均虚警率FAR则降低了15.762个百分点,能够有效地保证故障诊断效率、提高故障诊断精度、降低虚警率,具有可靠性和准确性。

关 键 词:温室环境  传感器  时空特性  节点信息  故障识别
收稿时间:2017-06-05

Sensor Fault Identification in Greenhouse Environment Based on Comparison of Spatial-temporal Information
WANG Jizhang,HE Tong,ZHOU Jinsheng,ZHAO Liwei,WANG Jianping and LI Pingping. Sensor Fault Identification in Greenhouse Environment Based on Comparison of Spatial-temporal Information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 319-326
Authors:WANG Jizhang  HE Tong  ZHOU Jinsheng  ZHAO Liwei  WANG Jianping  LI Pingping
Affiliation:Jiangsu University,Jiangsu University,Jiangsu University,Chinese Academy of Agricultural Mechanization Sciences,Jiangsu University and Jiangsu University;Nanjing Forestry University
Abstract:In order to judge the accuracy of sensor data in greenhouse environment measurement and control system, a sensor fault identification method was proposed based on the comparison of node information. This method based on the principal component analysis (PCA) was to achieve the sensor system fault detection through the monitoring statistics T2 and SPE changes. When the system detected the fault, the different sensor fault identification by using the comparison of node information based on temporal and spatial characteristics were realized, and to compare the effects with different methods, node information was made a comparison based on temporal scale, spatial scale and temporal-spatial scale, for multi-sensor fault identification. Verification results showed that the sensor fault detection method based on PCA can effectively realize the preliminary detection of the sensor system, and the sensor fault identification method based on the comparison of node information took the time and spatial scale into consideration, which can effectively achieve the specific fault sensor positioning. The value of the sensor nodes fault data average CDR was 98.37%, and the average FAR was 1.72%. Compared with the traditional method for sensor fault identification, the CDR increased by 22.067 percentage points and the FAR reduced by 15.762 percentage points, and it was found that the fault recognition method mentioned can effectively guarantee the efficiency of fault diagnosis improve the accuracy of fault diagnosis, and reduce the false alarm rate with reliability and accuracy.
Keywords:greenhouse environment  sensor  spatial-temporal characteristics  node information  fault identification
本文献已被 CNKI 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号