首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的地下水动态预测
作者姓名:张宇  卢文喜  伊燕平  陈社明
作者单位:1. 吉林大学环境与资源学院,吉林长春,130026
2. 吉林省宏利水土保持咨询有限公司,吉林长春,130033
摘    要:以内蒙古自治区巴彦淖尔市金泉工业园区为例,基于园区B248号长观井2001-2008年的地下水埋深资料,首先建立了地下水埋深RBF神经网络预测模型,而后对该模型的模拟结果作误差分析,并将相应值与BP网络模型进行对比。RBF神经网络模型和BP网络模型的最大相对误差分别为9.88%和19.67%,最大绝对误差分别为0.81和1.56,均方误差分别为0.19和0.98。显然,RBF神经网络具有较高的预测精度和较强的非线性映射能力。用上述训练好的RBF神经网络模型对研究区2009-2013年平水年条件下的地下水埋深进行预测,结果表明,研究区已出现地下水位持续下降的趋势。最后,根据地下水资源保护规划方案,在逐时段压缩地下水开采量10%的情况下,研究区2025年即可恢复到2001年的地下水水位值。

关 键 词:RBF神经网络  BP神经网络  地下水动态  预测
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号