Differential overstory leaf flushing contributes to the formation of a patchy understory |
| |
Authors: | Akira Komiyama Shogo Kato Miki Teranishi |
| |
Affiliation: | (1) Faculty of Agriculture, Gifu University, 501-1193 Gifu, Japan;(2) Present address: Agriculture and Forestry Office, Shizuoka Prefecture, 426-0075 Shizuoka, Japan |
| |
Abstract: | Understory individuals were found to form patches in a 100-year-old deciduous broad-leaved forest. The closed forest canopy was uniform, and so the light conditions at various locations across the forest floor differed little after the leaf flush of the overstory. To explain the distribution pattern in the understory, a hypothesis was proposed: in spring, the forest floor is divided into patches according to the timing of leaf flush of the overstory individuals, and the light conditions are more favorable for understory plants under the crowns of trees with later-flushing leaves. In the plot, three groups of early, intermediate, and late, were recognized in the overstory concerning the timing of leaf flush. As for the start of leaf flush, a difference of 31.6 days was recognized among tree species, and for the end of leaf flush, a difference of 40.3 days. In the spring of 1998, the relative photosynthetic-photon-flux density under an intensively studiedCastanea crenata tree (late-flushing species) usually showed higher values than that under a similarly studiedAcer mono tree (early-flushing species). Analysis of the spatial-distribution pattern using Morisita’s1δ index revealed that the understory community had an aggregated distribution. In the overstory, the late- and the intermediate-flushing-species groups showed aggregated distributions, while the early-flushing-species group showed random distribution. Spatial correlation between the understory and the overstory was analyzed by using Morisita’sRδ index. The distribution of whole understory community spatially co-occurred with that of the late-flushing-species group of the overstory. In contrast, the understory community was less developed below the members of the early-flushing-species group of the overstory. We consider that the data presented here support our hypothesis, and we suggest that the growth and survival of understory individuals were promoted in the places receiving light for long periods in spring. |
| |
Keywords: | deciduous broad-leaved forest direct radiation distribution of understory community leaf phenology in overstory light penetration in spring spatial heterogeneity |
本文献已被 SpringerLink 等数据库收录! |
|