摘 要: | 针对东江流域地物斑块破碎、湖泊河流众多等因素影响其地物分类精度的问题,该文以GF-1遥感影像为数据源,采用面向对象的分类方法,结合模糊分类和CART决策树分类法获取研究区土地利用分类信息。根据近红外波段均值的模糊范围(480~2 200)选择模糊小于隶属函数对水体与非水体进行区分,近红外波段均值小于480确定为水体,大于2 200确定为非水体;在水体类别中,采用长宽比指数模糊范围(1.53~4.32)调用模糊大于函数对河流与水库进行了区分,长宽比指数小于1.53确定为水库,大于4.32确定为河流;在非水体类别中,采用归一化植被指数NDVI(normalized difference vegetation index)特征值模糊范围(0.21~0.62)调用模糊大于函数区分植被与非植被,NDVI指数小于0.21确定为非植被,大于0.62确定为植被,最后采用面向对象的CART决策树分类法分出河流、水库、园地、林地、耕地、灌草地、未利用地、建设用地。与极大似然分类法、非监督分类法应用到GF-1遥感影像相比,基于面向对象的CART决策树分类方法的效果最好,总体分类精度高达93.27%,Kappa系数高达0.92。该方法可以作为东江流域获取较高土地利用信息的有效方法,为研究流域生态环境变化提供更准确的数据支持。
|