摘 要: | 为了解决河水流速的视频测量需要投掷浮标、效率低等问题,提出了基于机器视觉的河水表面流速测量方法。采用高清摄像机拍摄河水流动视频,捕捉河水流动时表面产生的波浪运动。为了凸显这些细微的水面运动,利用帧差法计算运动显著性图。提取相邻2帧显著性图的SURF特征点,通过特征点匹配法找出相邻2帧的匹配点,将匹配点间的距离作为特征点在2帧图像间的运动距离。计算了多帧图像间特征点运动距离的直方图,该直方图具有单峰特征;通过对直方图进行曲线拟合准确地找到峰值对应的距离,将其作为最优的运动距离。最后结合帧间时间和根据小孔成像原理导出的速度公式估计出河水表面流速。为了验证该方法的有效性,用流速仪和该方法进行了对比试验。结果表明,该方法具有精度好、稳定性高和运算速度快的优点。在低、中速河流速度估计时,该方法最大变异系数为1.63%,与流速仪测量结果的最大相对误差仅为3.12%。对2组数据的一致性分析表明,2组数据的皮尔逊相关系数和斯皮尔曼相关系数分别为0.998和0.990,显示了该方法的速度估计值与流速仪实测值有良好的一致性。与已有的图像处理方法相比,不仅更为准确,而且耗时更短。研究可为用其他机器视觉处理算法估计复杂水面和高速水流提供参考。
|