Affiliation: | (1) Pacific Northwest National Laboratory, MSIN P7–50, 902 Battelle Boulevard, Richland, Washington, 99352, USA;(2) USDA-ARS, Pullman, Washington, USA |
Abstract: | The use of the selective inhibition (SI) method for measuring fungal:bacterial ratios may be limited due to biocide selectivity and the overlap of antibiotic activity. This study evaluated novel pairs of antibiotics for their specificity in soils of different origins and their potential reduction in inhibition of non-target organisms. Four soils selected for this study were from a semi-arid shrub-steppe, a loblolly pine forest and two grassland sites (restored and farmed prairie plots). Three bactericides were tested: oxytetracycline hydrochloride, streptomycin sulphate, and bronopol. Three fungicides were tested: captan, ketoconazole, and nystatin. The inhibitor additivity ratio and fungal:bacterial ratios were calculated from control and treated soils where inhibition was measured as CO2 respiration reduction with biocides. We were able to minimize non-target inhibition by the antibiotics to <5% and thus calculate reliable fungal:bacterial ratios using captan to inhibit fungi in all four soils, and bronopol to inhibit bacteria in three of the four soils. The most successful bactericide in the restored prairie was oxytetracycline-HCl. Our results demonstrate that application of novel antibiotics is not uniformly successful in soils of different origin and that the SI technique requires more than just optimization of antibiotic concentration; it also requires optimization of antibiotic selection. |