基于GF-2号影像的森林优势树种分类 |
| |
作者姓名: | 王熊 胡兵 韩泽民 菅永峰 梁杰 周欢 周靖靖 佃袁勇 |
| |
作者单位: | 华中农业大学园艺林学学院 武汉430070,北京林业大学林学院 北京 100083,华中农业大学园艺林学学院 武汉430070,华中农业大学园艺林学学院 武汉430070,湖北省太子山林场管理局 荆门431822,湖北省太子山林场管理局 荆门431822,华中农业大学园艺林学学院 武汉430070;湖北林业信息工程技术研究中心 武汉430070,华中农业大学园艺林学学院 武汉430070;湖北林业信息工程技术研究中心 武汉430070 |
| |
基金项目: | 示范”;国家重点研发计划项目“南方低效人工林改造与特色生态产业技术” |
| |
摘 要: | 利用遥感数据开展森林资源优势树种的分类对森林资源的监测、森林可持续经营及生物多样性研究具有重要意义。研究针对复杂地形区域的破碎化森林,采用高分二号(GF-2)的多光谱影像作为基础数据进行森林优势树种的精细分类。本文以地形复杂、森林破碎化的湖北省竹山县九华山林场为研究对象,采用面向对象分类方法对树种进行精细分类,比较支持向量法、最近邻法(KNN)和随机森林(RF)三种不同分类算法的分类效果。在尺度阈值为30、合并阈值为95时分割的基础上,利用SVM、KNN和RF分类结果和分类精度差异较大。分类精度最高的是SVM分类方法,总体精度为68.52%,Kappa系数为0.62;其次为随机森林分类法,总体精度为60.29%,Kappa系数为0.54;KNN分类方法精度最低,总体精度为59.41%,Kappa系数为0.53。GF-2号数据能满足树种分类基本需求,在复杂地形和景观破碎化地区用支持向量机进行树种的分类精度更高,但仍存在一定的局限性。
|
关 键 词: | 优势树种分类 支持向量机 最近邻法 随机森林 高分二号 |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
|