首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficiency of Mesocosm-Scale Constructed Wetland Systems for Treatment of Sanitary Wastewater Under Tropical Conditions
Authors:Aracelly Caselles-Osorio  Patricia Villafa?e  Vanessa Caballero  Yelena Manzano
Institution:1. Faculty of Basic Sciences, Universidad del Atl??ntico, km 7 Highway Old Colombia Port, Barranquilla, Colombia
2. Research group: Wetlands of the Colombian Caribbean, Universidad del Atl??ntico, km 7 Highway Old Colombia Port, Barranquilla, Colombia
Abstract:Subsurface-flow constructed wetlands technology (SSFW) has been used successfully for treating sanitary wastewater throughout North America and Europe. However, treatment wetland technologies have not been used extensively in the tropics. To advance tropical studies, a pilot-scale SSFW was constructed on the campus of the University of the Atlantic in Barranquilla, Colombia. The systems performance was monitored from January to July of 2009. The treatment system consisted of a 760-L septic tank followed by three mesocsom-scale subsurface-flow constructed wetlands in parallel arrangement. Clarified wastewater was batch loaded to each unit at a rate of 53 L/m2/day to affect a hydraulic retention time of approximately 3 days. One of the treatment units served as a non-planted control (gravel only), while the other two treatment units were planted with either Eriochloa aristata or Eleocharis mutata. The objective of this study was to evaluate the comparative efficacy of the treatment units (planted vs. unplanted), with respect to their abilities to augment treatment of septic tank effluent (sanitary wastewater). Monitored parameters included plant biomass, oxidation?Creduction potential, chemical oxygen demand (COD), temperature, dissolved oxygen, pH, ammonia?Cnitrogen (NH 4 + ?CN) nitrate?C and nitrite?Cnitrogen (NO3?CN, NO2?CN), phosphates (PO 4 ? ), and coliform bacteria. Total biomass (dry matter) was 2.84 and 0.87 Kg/m2 for E. aristata and E. mutata, respectively. Redox potential in the plant rizospheres averaged ?172 mV (±164.1) in E. aristata, 29 mV (±251.1) in E. mutata, and 32 mV (±210.5) in the unplanted control. COD removal was superior in planted vs. non-planted systems (>75% vs. 47%). Ammonia and total phosphorus removal averaged 69% and 85%, respectively, in planted systems versus 31% and 59% in the unplanted system. Removal of total and fecal coliforms averaged 96%. Results of this pilot study revealed that SSFW technology in the tropics can provide significant removal of organic matter, nutrients, and bacteria from clarified sanitary wastewater.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号