首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Escherichia coli and Enterococci Attachment to Particles in Runoff from Highly and Sparsely Vegetated Grassland
Authors:Michelle L Soupir  Saied Mostaghimi
Institution:1. Agricultural and Biosystems Engineering, Iowa State University, 3163 NSRIC Building, Ames, IA, 50011, USA
2. Biological Systems Engineering, Virginia Tech, 104 Hutcheson Hall, Blacksburg, VA, 24061, USA
Abstract:Limited data on microbial partitioning between the freely suspended and particulate attached phases during transport along overland flow pathways have resulted in high uncertainty in bacterial fate and transport models and the application of these models to watershed management plans. The objectives of this study were to examine differences in attachment between E. coli and enterococci in runoff from plots with highly and sparsely vegetated grassland; investigate relations between flow regime, total suspended solids, and E. coli and enterococci attachment; and identify the particle size categories to which the attached cells were associated. Two rainfall simulations were conducted on large field plots 3 m wide by 18.3 m long with highly and both highly and sparsely vegetated covers and treated with standard cowpats. Results from the first experiment representing pasture with highly vegetated cover indicate that the majority of E. coli and enterococci are transported from the fresh manure source in the unattached state with only 4.8% of E. coli and 13% of enterococci associated with particles. The second experiment which compared partitioning in runoff from both highly and sparsely vegetated covers found lower bacterial attachment rates: the average E. coli percent attached was 0.06% from plots with highly vegetated cover and 2.8% from plots with sparsely vegetated cover while the corresponding values for enterococci were 0.98% and 1.23%, respectively. The findings from this study provide the first set of data on bacterial partitioning in overland flow from large field plots, and results may be helpful for parameterizing water quality models and designing conservation practices.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号