首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Genotype × environment interactions in populations possessing <Emphasis Type="Italic">Ga1</Emphasis>-<Emphasis Type="Italic">s</Emphasis> and <Emphasis Type="Italic">ga1</Emphasis> alleles for cross incompatibility in maize
Authors:Moisés D González  Linda M Pollak  A Susana Goggi
Institution:(1) Department of Agronomy, Iowa State University, Ames, IA 50011, USA
Abstract:Use of cross incompatibility in corn (Zea mays L.) by the Ga1-s allele may reduce cross-fertilization in specialty and conventional organic corn with pollen from genetically-modified (GM) corn. For effective use, information about environment, and genotype × environment effects on cross-fertilization by ga1 as well as heritability of cross incompatibility in maize is necessary. Our objective was to obtain this information. Four population pairs differing in their genotype at ga1 were evaluated for cross incompatibility with ga1 pollen in different environments. Populations were derived by crossing the recurrent parents B116, PHG35, ARZM16035:S19, and (CHZM05015:Mo17)Mo17 to Ga1-s donor parent Mo508W/Mo506W. Two replicates of each treatment were grown in the center of 952 m2 fields planted with purple corn as an adventitious source of ga1/ga1 pollen. Open pollination was allowed and the amount of cross-fertilization estimated by averaging the percentage of purple seeds. Environment and genotype × environment effects were not significant. Contrasts to evaluate differences in cross-fertilization between Ga1-s and ga1 populations revealed that mean percentages of cross-fertilization in Ga1-s populations of B116, ARZM16035:S19, and (CHZM05015:Mo17)Mo17 were significantly lower than in ga1 populations. The estimated broad-sense heritability on an entry-mean basis for cross incompatibility was 0.81. Results suggest differences in genotype at ga1 played a major role in cross-fertilization of populations differing in their genotype at the ga1 locus. Incompatibility may be selected effectively over different environments and the Ga1-s system may be of value to reduce cross-fertilization with GM corn pollen.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号