首页 | 本学科首页   官方微博 | 高级检索  
     

基于无人机遥感影像的玉米冠层温度提取及作物水分胁迫监测
引用本文:张智韬, 于广多, 吴天奎, 张誉馨, 白旭乾, 杨帅, 周永财. 基于无人机遥感影像的玉米冠层温度提取及作物水分胁迫监测[J]. 农业工程学报, 2021, 37(23): 82-89. DOI: 10.11975/j.issn.1002-6819.2021.23.010
作者姓名:张智韬  于广多  吴天奎  张誉馨  白旭乾  杨帅  周永财
作者单位:1.西北农林科技大学水利与建筑工程学院,杨凌 712100;2.西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100
基金项目:国家自然科学基金(51979232)
摘    要:
针对当前无人机热红外遥感提取冠层温度不准确、监测作物水分胁迫状况精度不高的问题,该研究以不同水分处理的拔节期夏玉米为研究对象,利用无人机获取试验区域热红外和可见光图像资料,分别采用Otsu算法、EXG-Kmeans算法和Otsu-EXG-Kmeans算法获取冠层区域图像,并对提取结果进行精度评价,而后采用最优算法求得对...

关 键 词:遥感  冠层  温度  热红外  Otsu算法  EXG指数  Kmeans算法  作物水分胁迫指数
收稿时间:2021-05-20
修稿时间:2021-10-10

Temperature extraction of maize canopy and crop water stress monitoring based on UAV remote sensing images
Zhang Zhitao, Yu Guangduo, Wu Tiankui, Zhang Yuxin, Bai Xuqian, Yang Shuai, Zhou Yongcai. Temperature extraction of maize canopy and crop water stress monitoring based on UAV remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 82-89. DOI: 10.11975/j.issn.1002-6819.2021.23.010
Authors:Zhang Zhitao  Yu Guangduo  Wu Tiankui  Zhang Yuxin  Bai Xuqian  Yang Shuai  Zhou Yongcai
Affiliation:1.College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China;2.Key Laboratory of Agricultural Soil and Water Engineering in Arid Areas Subordinated to the Ministry of Education, Northwest A&F University, Yangling 712100, China
Abstract:
Unmanned aerial vehicles (UAVs) with thermal infrared remote sensing have been used to rapidly extract the temperature of the crop canopy, further to monitor the water stress condition of the crop. The removal of soil background from the thermal infrared images can be an effective way to improve the monitoring accuracy of crop moisture. But there is also a great challenge on the thermal infrared image processing. In this study, an accurate and rapid temperature extraction was implemented to monitor the water stress using the UAVs with remote sensing images. The summer maize at the jointing stage was selected as the research object. There were also four completely irrigation treatments with three replicates and a total of 12 experimental plots. Specifically, the four water treatments were: T1 (50% of the field capacity), T2 (65% of the field capacity), T3 (80% of the field capacity), and T4 (95%-100% of the field capacity). The thermal infrared and visible images were captured by the UAVs on July 26, July 27, July 29, July 31, and August 2, 2021. The data of canopy temperature and soil water content at 20cm depth were also collected at the same time. After that, the Otsu algorithm, EXG-Kmeans, and Otsu-EXG-Kmeans were selected to determine the canopy area in the images. The accuracy of the extraction was evaluated from four aspects, including the schematics of canopy area, classification accuracy, temperature histogram, and correlation with the measured canopy temperature. An optimal combination of parameters was achieved to extract the thermal infrared images of canopy temperature. Subsequently, a crop water stress index (CWSI) was also achieved during this time. The relationship between CWSI and soil water content was then established to monitor the water deficit of maize, according to the daily average trend of CWSI. The results showed that the Otsu-EXG-Kmeans presented a higher extraction accuracy for the canopy temperature (User''s accuracy: 95.9%>83.2%>66.6%), and the extracted canopy temperature was closer to the measured temperature (r:0.788>0.762>0.750>0.737), indicating that the Otsu-EXG-Kmeans was an effective way to accurately extract the canopy temperature. The CWSI presented a higher correlation with the soil water content (r:-0.738<-0.666), compared with the canopy temperature. The daily average variation trend of CWSI was more consistent with the actual situation. Consequently, the improved extraction can be widely expected to extract the canopy temperature, thereby accurately monitoring the water shortage situation of maize. This finding can provide a strong reference for the UAVs to accurately monitor the crop water stress under remote sensing.
Keywords:remote sensing   canopy   temperature   thermal infrared   Otsu algorithm   EXG index   Kmeans algorithm   crop water stress index
本文献已被 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号