首页 | 本学科首页   官方微博 | 高级检索  
     


Airborne nitrogen load in Japanese and Chinese agroecosystems
Authors:Kentaro HAYASHI   Xiaoyuan YAN
Affiliation:Carbon and Nutrient Cycles Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan;, and State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
Abstract:The objective of this review is to make current knowledge on the nitrogen (N) load throughout the atmosphere (airborne N load) available to readers, with special emphasis on Japanese and Chinese agroecosystems. Key species of airborne N are ammonia, nitrogen dioxide, nitrogen oxide, nitric acid, nitrous acid and particulate ammonium and nitrate. Organic N also exists in the atmosphere. The main processes in terms of the airborne N load involve emission, atmospheric transportation and transformation, atmospheric deposition and environmental impacts. Agricultural activities are the largest emitters of ammonia through emissions mainly from livestock waste and field-applied N fertilizers. The ammonia emissions in China in 1995 from chemical fertilizers and organic fertilizers, such as animal excreta, were estimated to be 3.56 and 2.04 Tg N year−1, respectively, and the emissions in Japan were 0.059 and 0.069 Tg N year−1, respectively. The most fundamental causes of the airborne N load in relation to Japanese and Chinese agriculture were intensive livestock farming in Japan and over use of N fertilizers in China. However, agroecosystems are also a sink for airborne N. Atmospheric N deposition was up to 20 and 60 kg N ha−1 year−1 in Japan and China, respectively. The unrelenting load of airborne N continues in Japan and China. The development of a simple, but accurate method to determine the dry deposition flux that is applicable to simultaneous and multipoint observations would be valuable. The establishment of cross relationships among in situ observations, remote sensing and numerical modeling is also needed to cope with the issue by assessing the actual status, predicting the future status and working out effective measures.
Keywords:atmospheric deposition    China    emission    Japan    reactive nitrogen
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号