首页 | 本学科首页   官方微博 | 高级检索  
     


Stereochemistry and biosynthesis of 8-O-4′ neolignans in Eucommia ulmoides: diastereoselective formation of guaiacylglycerol-8-O-4′-(sinapyl alcohol) ether
Authors:Nattaya Lourith  Takeshi Katayama  Toshisada Suzuki
Affiliation:(1) Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
Abstract:
Stereochemistry and biosynthesis of guaiacylglycerol-8-O-4′-(sinapyl alcohol) ether (GGSE), an 8-O-4′ neolignan, which consists of coniferyl and sinapyl alcohol moieties, in Eucommia ulmoides were investigated. Four 8-O-4′ neolignans, GGSE, syringylglycerol-8-O-4′-(coniferyl alcohol) ether (SGCE), guaiacylglycerol-8-O-4′-(coniferyl alcohol) ether (GGCE), and syringylglycerol-8-O-4′-(sinapyl alcohol) ether (SGSE), were synthesized. Their erythro and threo diastereomers were separated through acetonide derivatives, intermediates of the synthesis, and identified by means of nuclear magnetic resonance (NMR) spectroscopy. All of the erythro-acetonide derivatives have larger coupling constants (ca 9 Hz) for the C7-H resonances than those of the threo ones (1.5–2 Hz). In the case of the four 8-O-4′ neolignans, the C7-H coupling constants of the threo-isomers are not smaller than those of the erythro ones. GGSE isolated previously from this plant was identified as the erythro isomer by comparison of the 13C-NMR data with synthetic erythro-GGSE and threo-GGSE and the other 8-O-4′ neolignans mentioned as above. Administration of a mixture of [8-14C]coniferyl alcohol and [8-14C]sinapyl alcohol to excised shoots of E. ulmoides was carried out and the incorporation of 14C into erythro-[14C]GGSE was found to be higher than that in threo-[14C]GGSE. The occurrence of diastereoselective formation of erythro-GGSE by cross coupling of coniferyl and sinapyl alcohols is suggested.Part of this paper was presented at the 47th Lignin Symposium, Fukuoka, October 2002 and the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, April 2003
Keywords:Eucommia ulmoides  Neolignan  Diastereomer  Cross coupling  Biosynthesis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号