首页 | 本学科首页   官方微博 | 高级检索  
     

利用高光谱成像技术和多变量校正方法检测苹果的硬度(英)
引用本文:赵杰文,陈全胜,Saritporn Vittayapadung,Sumpun Chaitep. 利用高光谱成像技术和多变量校正方法检测苹果的硬度(英)[J]. 农业工程学报, 2009, 25(11): 226-231. DOI: 10.3969/j.issn.1002-6819.2009.11.041
作者姓名:赵杰文  陈全胜  Saritporn Vittayapadung  Sumpun Chaitep
作者单位:1. 江苏大学食品与生物工程学院,镇江,212013
2. Faculty of Engineering,Chiang Mai University,Chiang Mai 50200,Thailand
基金项目:江苏省自然科学基金(BK2006707-1)
摘    要:
高光谱图像集图像信息与光谱信息于一身,应用于农产品品质无损检测领域。该研究尝试利用高光谱图像技术结合多变量校正方法检测苹果硬度的可行性。试验通过获取的高光谱图像中提取有效的光谱信息来建立预测苹果硬度的预测模型。在建立模型过程中,偏最小二乘(PLS)和支持向量回归(SVR)两种多变量校正方法被比较,结果表明在785.11~872.45 nm范围内,SVR模型的性能优于PLS模型,模型对硬度预测结果的相关系数为0.6808。试验结果表明高光谱图像技术可以被用来检测苹果的硬度。

关 键 词:光谱分析,图像处理,水果,硬度,检测
收稿时间:2008-04-26
修稿时间:2009-11-20

Determination of apple firmness using hyperspectral imaging technique and multivariate calibrations
Zhao Jiewen,Chen Quansheng,Saritporn Vittayapadung and Sumpun Chaitep. Determination of apple firmness using hyperspectral imaging technique and multivariate calibrations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(11): 226-231. DOI: 10.3969/j.issn.1002-6819.2009.11.041
Authors:Zhao Jiewen  Chen Quansheng  Saritporn Vittayapadung  Sumpun Chaitep
Affiliation:1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China,1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China,1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China and 2. Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
Abstract:
Hyperspectral imaging technology is applied to nondestructive quality determination of agricultural and food products. It has a greater advantage of combining spatial image and spectral measurement which can determine both external and internal quality of the product. Feasibility of using hyperspectral imaging technique and multivariate calibrations to determine apple firmness was studied. Forecasting model of apple firmness was established by effective spectral information extracted in hyperspectral image. Support vector regression (SVR) and partial least square (PLS) were applied comparatively to calibrate model. The result showed that the optimal spectral range of apple firmness was 785.11-872.45 nm. The SVR calibration model was superior to PLS model in fruit firmness determination. The correlation coefficient between the hyperspectral imaging prediction results and reference measurement results was R=0.6808 in the prediction. In conclusion, hyperspectral imaging technique can be applied to determine apple firmness.
Keywords:spectrum analysis   image processing   fruits   firmness   determination
本文献已被 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号