首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter
Authors:A F Plante  R T Conant  E A Paul  K Paustian  & J Six
Institution:NREL, Colorado State University,; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523–1499, USA, and; Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
Abstract:The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt‐ and clay‐sized soil fractions. Microaggegrate‐derived and easily dispersed silt‐ and clay‐sized fractions were isolated from surface soil samples collected from six long‐term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non‐hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no‐till > conventional‐till at all sites. Concentrations of non‐hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt‐sized fractions compared with the clay‐sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号