摘 要: | 对采摘于一枣园的180个壶瓶枣样本,随机分成150个样本校正集和30个样本预测集。用FieldSpec3光谱仪采集光谱,并进行多元散射校正(MSC)预处理,之后分别利用连续投影算法(SPA)和逐步回归法(SRA)提取特征波长,并结合光谱理论分析确定,再分别基于偏最小二乘法(PLS)和最小二乘-支持向量机(LS-SVM)建立壶瓶枣可溶性固形物含量预测的简化模型和全波段模型。结果表明,全波段PLS模型预测的相关系数和预测均方根误差分别为0.887 4和1.088 9,预测效果最好;建立的MSC-SPA-PLS模型预测的相关系数和均方根误差分别为0.799 0和1.407 8,建立的MSC-SRA-PLS模型预测的相关系数和均方根误差分别为0.822 4和1.3851,与全波段的MSC-PLS相比,精度均降低;建立的MSC-SPA-LS-SVM模型预测的相关系数和均方根误差分别为0.796 3和1.145 8,与全波段的MSC-LS-SVM相比,精度提高;建立的MSC-SRA-LS-SVM模型预测精度很低,不适用。
|