首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Susceptibility of northern British Columbia forests to spruce budworm defoliation
Institution:1. Graduate Research Assistant, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA;2. Professor, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA;3. Associate Professor, Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
Abstract:Stand susceptibility to defoliation by spruce budworm, Choristoneura fumiferana (Clem.), was examined in the Fort Nelson area of the Prince George Forest Region of British Columbia. In a retrospective study, defoliation maps of the study area were overlaid onto British Columbia Ministry of Forests cover type maps using a geographic information system. Analysis of the combined data identified forest characteristics associated with increased susceptibility to defoliation by spruce budworm. These were stands where the leading species was white spruce (Picea glauca (Moench) Voss), or where spruce was associated with aspen (Populus tremuloides Michx. and P. balsamifera L.) in mixed stands. Susceptibility to defoliation also was related to site quality, level of crown closure and stand age. Spruce stands on medium quality sites (site index 15 to 25 m, at reference breast height age 50 years) were more susceptible than stands on both poor- and high-quality sites. When spruce was mixed with aspen, stands on higher quality sites were more susceptible to budworm attack than poor sites. Open stands, where crown closure was <50%, were more susceptible to attack by spruce budworm than closed canopy stands. Older stands (120–199 years) were more susceptible to budworm attack than younger stands (40–110 years). In defoliated plots monitored for 6 years, tree mortality and top-kill reached a maximum of 30.4 and 47.2%, respectively. The losses varied with level of defoliation and were reduced by applications of the biological pesticide Bacillus thuringiensis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号