首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets
Institution:1. Civil Engineering Research and Innovation for Sustainability (CERis), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal;2. Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, 7500138 Santiago, Chile;3. Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain;4. Departamento de Ingeniería Civil, University of Alicante, 03080 Alicante, Spain;5. Dipartimento di Scienze della Terra, della Vita e dell''Ambiente (DiSTeVA), Università degli Studi di Urbino ‘Carlo Bo’, Campus Scientifico ‘E. Mattei’, 61029 Urbino, Italy;6. Departamento de Ciencias de la Tierra y Medio Ambiente, University of Alicante, 03080 Alicante, Spain;7. Département des Sciences de la Terre, Laboratoire de Géologie et Télédétection, URAC 46, Université Mohammed V, B.P. 703 Rabat, Morocco
Abstract:Mismanagement of nitrogenous fertilizers has caused serious nitrate (NO3) contamination in many flood-irrigated regions of the western US. Low-volume irrigation practices, such as drip irrigation, can offer an alternative approach for controlling NO3 leaching and agricultural water use. The objectives of this study were to compare NO3 movement through soils under flood and drip irrigation practices for sugarbeet production, and to evaluate the agronomic feasibility of implementing drip irrigation. A field experiment was conducted during the sugarbeet (Beta vulgaris L.) growing seasons of 1996 and 1997 in southeastern Wyoming, where NO3 contamination is a continued concern and sugarbeet is a major cash crop. Three drip irrigation regimes, corresponding to 20, 35, and 50% water depletion of field capacity (designated as D1, D2, and D3, respectively), were compared against flood irrigation. The irrigation plots were treated with 112, 168, and 224 kg N ha−1 (designated as F0, F1, and F2, respectively). Sugarbeet (SB) yields and sugar contents under drip irrigation were higher (3–28%) than those with flood irrigation; yields and sugar contents for the drip systems were in the order of D1>D2>D3. For all of the irrigation applications, there was an increasing trend in yields with increasing fertilizer rates. Drip regime resulted in greater residual soil NO3 (RSN) for both 1996 and 1997 seasons as compared to flood practices. Values of RSN in both years followed the trend: F2>F1>F0. Soil NO3 in all three drip regimes was higher (1.6–2.4 times) than that with flood irrigation. In the overall root zone, NO3 concentrations between D1 and D2 were comparable, whereas both of those levels were lower than D3. Greater NO3 concentrations with D3 were observed at all depths. The amount of applied irrigation water with the drip system was lower than that for flood irrigation. Agronomic water use efficiency (WUE) and fertilizer use efficiency (FUE) for drip irrigation were always higher than those for flood irrigation. In 1996, WUE and FUE maintained an order of D1>D2>D3. There was a decreasing pattern in FUE values with increasing fertilizer rates. The overall results indicated that SB production could be sustained with lower water and fertilizer use by using drip irrigation. The p-values (≤0.05), based on both F-test (pf) and two-tailed student’s t-test (pt), suggested a significant difference between the yield means obtained under drip and flood irrigation practices. As compared to the flood irrigation, the least p-values were obtained with D1 followed by D2 and D3, respectively, thus, confirming that D1 was the most effective treatment. The p-values for SB yields under comparative fertilizer treatments and same drip application showed no significant difference between the means, thus, suggesting the feasibility of using lower fertilizer rate while sustaining the targeted yield under drip irrigation. The comparative estimation of water losses by drainage between flood and drip irrigation suggested that the later practice reduced the quantity of water leaching beyond the root zone. Among the three drip treatments, the lowest drainage amount was observed with D1 as a result of its higher irrigation frequency and smaller quantity of water input during each application.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号