首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of canopy stratification during early succession in northern hardwoods
Authors:Susan H Bicknell
Institution:Forestry Department, Humboldt State University, Arcata, CA 95521, U.S.A.
Abstract:Canopy development on a 6-year-old strip cut was analyzed by measuring the heights to terminal buds and bud scale scars of the tallest individuals of each species present on 50 plots of radius 6 m. Phenology of height growth was monitored during the following growing season. Pin cherry (Prunus pensylvania L.), an intolerant short-lived tree, had the fastest growth rate and was on the average the tallest species from the second to the sixth year of regrowth. Although advance regeneration of sugar maple (Acer saccharum Marsh.) and beech (Fagus grandifoloa Ehrh.) were the tallest trees during the first growing season, their slower growth rate insured that they would not keep up with the pin cherry. Trembling aspen (Populus tremuloides Michx.), striped maple (Acer pensylvanicum L.) and yellow birch (Betula alleghaniensis Britt.) occupied an intermediate position in the canopy by the end of the sixth growing season, and showed relatively greater annual height increment than beech or sugar maple. Height growth phenology differed slightly for each species. Beech, ash (Fraxinus americana L.) and sugar maple commenced growth early, grew rapidly and set buds all by 1 August (beech by 15 June). Yellow birch, pin cherry and trembling aspen started growing as early as the others, grew more slowly at first but then grew for a longer period of time. Striped maple seemed to be somewhat intermediate. Growth phenology and growth rate are related to the tolerance and growth form type (e.g. determinate or indeterminate) of the species. The most tolerant species tend to be determinate in growth form, have slower growth rates and complete height growth earlier. The intolerant species tend to be indeterminate, have a faster growth rate and continue to grow for a longer period. These may be mechanisms by which many species can grow together and avoid adverse effects such as suppression.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号