首页 | 本学科首页   官方微博 | 高级检索  
     

基于Adaboosting_SVM算法的多特征蛋壳裂纹识别
作者姓名:熊利荣  谢灿  祝志慧
作者单位:华中农业大学工学院,武汉,430070
基金项目:国家自然科学基金项目(51105160); 华中农业大学博士启动基金项目(52902-0900206027)
摘    要:以无裂纹蛋和裂纹蛋为测试对象,采用机器视觉技术和支持向量机等技术手段,分析无裂纹蛋和裂纹蛋在图像上的差异,提取特征参数,实现蛋壳裂纹的自动识别;针对蛋壳表面的亮斑,对预处理后的图像运行消除亮斑算法并进行区域标记。在此基础上,从5个不同视角提取13个能够表征无裂纹蛋和裂纹蛋的特征参数,分别是图像标记区域参数(区域标记数和标记点数)、几何特征参数(长轴和短轴)、基于Freeman链码的形状参数(形状数)、纹理特征参数(均值、标准偏差、平滑度、三阶矩、一致性、熵)和频谱特性参数(最大幅值和最大相位)。采用Adaboosting算子对上述特征参数进行优化,突出影响因子较大的参数组合,作为SVM的输入向量,建立蛋壳裂纹的识别模型。结果表明:该方法对蛋壳表面的亮斑、微小裂纹及普通裂纹均具有识别能力,模型正确率达97.5%,符合蛋品企业对蛋壳裂纹检测的精度要求。

关 键 词:蛋壳  裂纹  机器视觉  支持向量机
收稿时间:2014-04-28
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华中农业大学学报》浏览原始摘要信息
点击此处可从《华中农业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号