首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An evaluation of potassium and nitrogen fertilization of grassland, and date of harvest, on fermentation, effluent production, dry-matter recovery and predicted feeding value of silage
Authors:Keady  & O'Kiely
Institution:Teagasc, Moorepark Research Centre, Fermoy, Co. Cork, Ireland; Teagasc, Grange Research Centre, Dunsany, Co. Meath, Ireland
Abstract:The effects of levels of application of potassium (K) fertilizer, and its interactions with both nitrogen (N) fertilizer and the growth interval between fertilizer application and harvesting on ryegrass herbage yield and chemical composition, and the fermentation, predicted feeding value, effluent production and dry-matter (DM) recovery of silage were evaluated in a randomized block design experiment. Twenty plots in each of four replicate blocks received either 0, 60, 120, 180 or 240 kg K ha?1, each at either 120 or 168 kg N ha?1. Herbage from the plots was harvested on either 24 May or 8 June and ensiled (6 kg) unwilted, without additive treatment, in laboratory silos. Immediately after harvesting, all plots received 95 kg N ha?1 and were harvested again after a 49-day regrowth interval. From the primary growth, herbage DM yields were 6·31, 6·57, 6·74, 6·93 and 6·93 (s.e. 0·091) t ha?1, herbage K concentrations were 15·5, 16·2, 19·1, 22·4 and 26·1 (s.e. 1·06) g kg?1 DM and herbage ash concentrations were 57, 63, 71, 73 and 76 (s.e. 0·9) g kg?1 DM, and for the primary regrowth herbage DM yields were 2·56, 2·73, 2·83, 2·94 and 2·99 (s.e. 0·056) t ha?1 for the 0, 60, 120, 180 and 240 g K ha?1 treatments respectively. Otherwise, the level of K fertilizer did not alter the chemical composition of the herbage at ensiling. After a 120-day fermentation period the silos were opened and sampled. The level of K fertilization had little effect on silage fermentation and had no effect on estimated intake potential, in vitro DM digestibility (DMD), DM recovery or effluent production. Increasing N fertilizer application increased silage buffering capacity (P < 0·05) and the concentrations of crude protein (P < 0·001), ammonia N (P < 0·01) and effluent volume (P < 0·01), and decreased ethanol concentration (P < 0·05) and intake potential (P < 0·05). Except for the concentrations of lactate and butyrate, delaying the harvesting date deleteriously changed the chemical composition (P < 0·001) and decreased intake potential (P < 0·001) and DMD (P < 0·001) of the silages. It is concluded that, other than for K and ash concentration, increasing the level of K fertilizer application did not alter the chemical composition of herbage from the primary growth or the resultant silage. Also, the level of K fertilizer application did not affect predicted feeding value, DM recovery or effluent production. Herbage yield increased linearly with increased fertilizer K application. Except for acetate and ethanol concentrations, there were no level of K fertilizer application by level of N fertilizer application interactions or level of K fertilizer application by harvest date interactions on silage fermentation or predicted feeding value. Increasing N fertilizer application from 120 to 168 kg ha?1 had a more deleterious effect on silage composition and feeding value than increasing K fertilizer application from 0 to 240 kg ha?1. Delaying harvesting was the most important factor affecting herbage yield and composition, and silage composition and had the most deleterious effect on silage feeding value.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号