Molecular characterization and identification of facilitative glucose transporter 2 (GLUT2) and its expression and of the related glycometabolism enzymes in response to different starch levels in blunt snout bream (Megalobrama amblycephala) |
| |
Authors: | Hualiang Liang Ahmed Mokrani Hopeson Chisomo-Kasiya Ogwok-Manas Wilson-Arop Haifeng Mi Ke Ji Xianping Ge Mingchun Ren |
| |
Affiliation: | 1.Wuxi Fisheries College,Nanjing Agricultural University,Wuxi,China;2.Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC),Chinese Academy of Fishery Sciences (CAFS),Wuxi,China |
| |
Abstract: | Facilitative glucose transporters (GLUT) are transmembrane transporters involved in glucose transport across the plasma membrane. In this study, blunt snout bream GLUT2 gene was cloned, and its expression in various tissues and in liver in response to diets with different carbohydrate levels (17.1; 21.8; 26.4; 32.0; 36.3; and 41.9% of dry matter). Blunt snout bream GLUT2 was also characterized. A full-length cDNA fragment of 2577 bp was cloned, which contains a 5′-untranslated region (UTR) of 73 bp, a 3′-UTR of 992 bp, and an open reading frame of 1512 bp that encodes a polypeptide of 503 amino acids with predicted molecular mass of 55.046 kDa and theoretical isoelectric point was 7.52. The predicted GLUT2 protein has 12 transmembrane domains between amino acid residues at 7–29; 71–93; 106–123; 133–155; 168–190; 195–217; 282–301; 316–338; 345–367; 377–399; 412–434; and 438–460. Besides, the conservative structure domains located at 12–477 amino acids belong to the sugar porter family which is the major facilitator superfamily (MFS) of transporters. Blunt snout bream GLUT2 had the high degree of sequence identity to four GLUT2s from zebrafish, chicken, human, and mouse, with 91, 63, 57, and 54% identity, respectively. Quantitative real-time (qRT) PCR assays revealed that GLUT2 expression was high in the liver, intestine, and kidney; highest in the liver and was regulated by carbohydrate intake. Compared with the control group (17.1%), fed by 3 h with higher starch levels (32.0; 36.3; and 41.9%), increased plasma glucose levels and glycemic level went back to basal by 24 h after treatment. Furthermore, higher dietary starch levels significantly increase GLUT2, glucokinase (GK), and pyruvate kinase (PK) expression and concurrently decrease phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) mRNA levels (P?0.05), and these changes were also back to basal levels after 24 h of any dietary treatment. These results indicate that the blunt snout bream is able to regulate their ability to metabolize glucose by improving GLUT2, GK, and PK expression levels and decreasing PEPCK and G6P expression levels. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|