首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of soil organic matter turnover and soil respired CO2 in a temperate grassland labelled with 13C
Authors:D E Theis    M Jaeggi    D Aeschlimann    H Blum    E Frossard  & R T W Siegwolf
Institution:Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen; , and Institute of Plant Science, Swiss Federal Institute of Technology, 8092 Zürich, Switzerland
Abstract:The fate of carbon (C) in grassland soils is of particular interest since the vast majority in grassland ecosystems is stored below ground and respiratory C‐release from soils is a major component of the global C balance. The use of 13C‐depleted CO2 in a 10‐year free‐air carbon dioxide enrichment (FACE) experiment, gave a unique opportunity to study the turnover of the C sequestered during this experiment. Soil organic matter (SOM), soil air and plant material were analysed for δ13C and C contents in the last year of the FACE experiment (2002) and in the two following growing seasons. After 10 years of exposure to CO2 enrichment at 600 ppmv, no significant differences in SOM C content could be detected between fumigated and non‐fumigated plots. A 13C depletion of 3.4‰ was found in SOM (0–12 cm) of the fumigated soils in comparison with the control soils and a rapid decrease of this difference was observed after the end of fumigation. Within 2 years, 49% of the C in this SOM (0–12 cm) was exchanged with fresh C, with the limitation that this exchange cannot be further dissected into respiratory decay of old C and freshly sequestered new C. By analysing the mechanistic effects of a drought on the plant‐soil system it was shown that rhizosphere respiration is the dominant factor in soil respiration. Consideration of ecophysiological factors that drive plant activity is therefore important when soil respiration is to be investigated or modelled.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号