首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Speciation of phosphorus in temperate zone forest soils as assessed by combined wet‐chemical fractionation and XANES spectroscopy
Authors:Jörg Prietzel  Wantana Klysubun  Florian Werner
Institution:1. Technische Universit?t München, Lehrstuhl für Bodenkunde, Emil‐Ramann‐Stra?e 2, 85354 Freising, Germany;2. Synchrotron Light Research Institute, Muang District, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
Abstract:Phosphorus availability in terrestrial ecosystems is strongly dependent on soil P speciation. Here we present information on the P speciation of 10 forest soils in Germany developed from different parent materials as assessed by combined wet‐chemical P fractionation and synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy. Soil P speciation showed clear differences among different parent materials and changed systematically with soil depth. In soils formed from silicate bedrock or loess, Fe‐bound P species (FePO4, organic and inorganic phosphate adsorbed to Fe oxyhydroxides) and Al‐bound P species (AlPO4, organic and inorganic phosphate adsorbed to Al oxyhydroxides, Al‐saturated clay minerals and Al‐saturated soil organic matter) were most dominant. In contrast, the P speciation of soils formed from calcareous bedrock was dominated (40–70% of total P) by Ca‐bound organic P, which most likely primarily is inositol hexakisphosphate (IHP) precipitated as Ca3‐IHP. The second largest portion of total P in all calcareous soils was organic P not bound to Ca, Al, or Fe. The relevance of this P form decreased with soil depth. Additionally, apatite (relevance increasing with depth) and Al‐bound P were present. The most relevant soil properties governing the P speciation of the investigated soils were soil stocks of Fe oxyhydroxides, organic matter, and carbonate. Different types of P speciation in soils on silicate and calcareous parent material suggest different ecosystem P nutrition strategies and biogeochemical P cycling patterns in the respective ecosystems. Our study demonstrates that combined wet‐chemical soil P fractionation and synchrotron‐based XANES spectroscopy provides substantial novel information on the P speciation of forest soils.
Keywords:P fractions  P species  P extraction  X‐ray absorption near‐edge structure spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号