首页 | 本学科首页   官方微博 | 高级检索  
     

基于中医药领域本体的信息检索模型研究
引用本文:刘东波,黄惠勇. 基于中医药领域本体的信息检索模型研究[J]. 勤云标准版测试, 2017, 37(2): 220-224
作者姓名:刘东波  黄惠勇
作者单位:湖南中医药大学, 湖南 长沙 410208,湖南中医药大学, 湖南 长沙 410208
基金项目:湖南中医药大学中医诊断国家重点学科开放基金项目(2013ZYZD17)。
摘    要:
针对传统基于关键词匹配的中医药信息检索存在查全率和查准率低下的缺陷,将本体与潜在语义索引相结合,提出一种基于中医药领域本体的语义信息检索模型。该模型基于本体概念扩展树构建相应的查询扩展方法和语义向量空间模型,将用户查询和文档集映射到同一潜在语义空间,通过计算查询向量与文档之间的相似度返回检索结果。着重阐述了该模型的体系结构、实现过程和关键技术,并对其实用性进行论证。

关 键 词:中医药领域本体  查询扩展  潜在语义索引  信息检索
收稿时间:2016-10-01

Study of the Information Retrieval Model Based on Traditional Chinese Medicine Domain Ontology
LIU Dongbo and HUANG Huiyong. Study of the Information Retrieval Model Based on Traditional Chinese Medicine Domain Ontology[J]. , 2017, 37(2): 220-224
Authors:LIU Dongbo and HUANG Huiyong
Affiliation:Hunan University of Chinese Medicine, Changsha, Hunan 410208, China and Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
Abstract:
Aiming at the defect of low precision rate and low recall rate of traditional Chinese medicine (TCM) information retrieval based on keywords matching, we propose a semantic information retrieval model based on domain ontology of TCM by combining ontology with latent semantic indexing. Based on ontology concept-extended tree method of query expansion and semantic vector space, the model can map user queries and documents to the same latent semantic space, and returning retrieval results by calculating the similarity between the query vector and the document. In this paper, we focus on the architecture, implementation process and key technologies of the model, and demonstrate its practicability.
Keywords:TCM domain ontologyp  query expansion  latent semantic indexing  information retrieval
点击此处可从《勤云标准版测试》浏览原始摘要信息
点击此处可从《勤云标准版测试》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号