首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Harvest residue management and fertilisation effects on soil carbon and nitrogen in a 15-year-old Pinus radiata plantation forest
Authors:Haydon S Jones  Peter N BeetsMark O Kimberley  Loretta G Garrett
Institution:Scion, Private Bag 3020, Rotorua 3046, New Zealand
Abstract:Growing interest in the use of planted forests for bioenergy production could lead to an increase in the quantities of harvest residues extracted. We analysed the change in C and N stocks in the forest floor (LFH horizon) and C and N concentrations in the mineral soil (to a depth of 0.3 m) between pre-harvest and mid-rotation (stand age 15 years) measurements at a trial site situated in a Pinus radiata plantation forest in the central North Island, New Zealand. The impacts of three harvest residue management treatments: residue plus forest floor removal (FF), residue removal (whole-tree harvesting; WT), and residue retention (stem-only harvesting; SO) were investigated with and without the mean annual application of 190 kg N ha−1 year−1 of urea-N fertiliser (plus minor additions of P, B and Mg). Stocks of C and N in the forest floor were significantly decreased under FF and WT treatments whereas C stocks and mass of the forest floor were significantly increased under the SO treatment over the 15-year period. Averaged across all harvesting treatments, fertilisation prevented the significant declines in mass and C and N stocks of the forest floor which occurred in unfertilised plots. The C:N ratio of the top 0.1 m of mineral soil was significantly increased under the FF treatment corresponding to a significant reduction in N concentration over the period. However, averaged across all harvesting treatments, fertilisation prevented the significant increase in C:N ratio of the top 0.1 m of mineral soil and significantly decreased the C:N ratio of the 0-0.3 m depth range. Results indicate that residue extraction for bioenergy production is likely to reduce C and N stocks in the forest floor through to mid-rotation and possibly beyond unless fertiliser is applied. Forest floors should be retained to avoid adverse impacts on topsoil fertility (i.e., increased C:N ratio). Based on the rate of recovery of the forest floor under the FF treatment, stocks of C and N in the forest floor were projected to reach pre-harvest levels at stand age 18-20. While adverse effects of residue extraction may be mitigated by the application of urea-N fertiliser, it should be noted that, in this experiment, fertiliser was applied at a high rate. Assessment of the sustainability of harvest residue extraction over multiple rotations will require long-term monitoring.
Keywords:Soil carbon  Soil nitrogen  Harvest residue management  Forest floor  Fertilisation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号