首页 | 本学科首页   官方微博 | 高级检索  
     


Depth distribution of soil organic C and N after long-term soybean cropping in Texas
Authors:Fugen Dou   Alan L. Wright  Frank M. Hons
Affiliation:

aInternational Arctic Research Center, 930 Koyukuk Drive, P.O. Box 757340, Fairbanks, AK 99775-7340, Unites States

bEverglades Research & Education Center, University of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL 33430-4702, Unites States

cDepartment of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, TX 77843-2474, Unites States

Abstract:Crop management practices have potential to enhance subsoil C and N sequestration in the southern U.S., but effects may vary with tillage regime and cropping sequence. The objective of this study was to determine the impacts of tillage and soybean cropping sequence on the depth distribution of soil organic C (SOC), dissolved organic C (DOC), and total N after 20 years of treatment imposition for a silty clay loam soil in central Texas. A continuous soybean monoculture, a wheat–soybean doublecrop, and a sorghum–wheat–soybean rotation were established under both conventional (CT) and no tillage (NT). Soil was sampled after soybean harvest and sectioned into 0–5, 5–15, 15–30, 30–55, 55–80, and 80–105 cm depth intervals. Both tillage and cropping intensity influenced C and N dynamics in surface and subsurface soils. No tillage increased SOC, DOC, and total N compared to CT to a 30 cm depth for continuous soybean, but to 55 cm depths for the more intensive sorghum–wheat–soybean rotation and wheat–soybean doublecrop. Averaged from 0 to 105 cm, NT increased SOC, DOC, and total N by 32, 22, and 34%, respectively, compared to CT. Intensive cropping increased SOC and total N at depths to 55 cm compared to continuous soybean, regardless of tillage regime. Continuous soybean had significantly lower SOC (5.3 g kg−1) than sorghum–wheat–soybean (6.4 g kg−1) and wheat–soybean (6.1 g kg−1), and 19% lower total N than other cropping sequences. Dissolved organic C was also significantly higher for sorghum–wheat–soybean (139 mg C kg−1) than wheat–soybean (92 mg C kg−1) and continuous soybean (100 mg C kg−1). The depth distribution of SOC, DOC, and total N indicated treatment effects below the maximum tillage depth (25 cm), suggesting that roots, or translocation of dissolved organic matter from surface soils, contributed to higher soil organic matter levels under NT than CT in subsurface soils. High-intensity cropping sequences, coupled with NT, resulted in the highest soil organic matter levels, demonstrating potential for C and N sequestration for subsurface soils in the southern U.S.
Keywords:Carbon sequestration   Dissolved organic C   Soil organic matter   Tillage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号