首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The mitigation effects of exogenous dopamine on low nitrogen stress in Malus hupehensis
Authors:LIU Xiao-min  GAO Teng-teng  ZHANG Zhi-jun  TAN ke-xin  JIN Yi-bo  ZHAO Yong-juan  MA Feng-wang  LI Chao
Institution:State Key Laboratory of Crop Stress Biology for Arid Areas, Ministry of Science and Technology/Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling 712100, P.R.China
Abstract:Dopamine plays numerous physiological roles in plants. We explored its role in the regulation of growth, nutrient absorption, and response to nitrogen (N) deficiency in Malus hupehensis Rehd. Under low N condition, plant growth slowed, and the net photosynthetic rates, chlorophyll contents, and maximal quantum yield of PSII (Fv/Fm) decreased significantly. However, the application of 100 μmol L?1 exogenous dopamine significantly reduced the inhibition of low N stress on plant growth. In addition to modifying root system architecture under low N supply, exogenous dopamine also changed the uptake, transport, and distribution of N, P, and K. Furthermore, exogenous dopamine enhances the tolerance to low nitrogen stress by increasing the activity of enzymes (nitrate reductase, nitrite reductase, glutamic acid synthase and glutamine synthetase) involved in N metabolism. We also found that exogenous dopamine promoted the expression of ethylene signaling genes (ERF1, ERF2, EIL1, ERS2, ETR1, and EIN4) under low N stress. Therefore, we hypothesized that ethylene might be involved in dopamine response to low N stress in M. hupehensis. Our results suggest that exogenous dopamine can mitigate low N stress by regulating the absorption of mineral nutrients, possibly through the regulation of the ethylene signaling pathway.
Keywords:nitrogen deficiency  dopamine  root system architecture  ethylene
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《农业科学学报(英文版)》浏览原始摘要信息
点击此处可从《农业科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号