首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NADH-dependent cytochrome b5 reductase and NADPH methemoglobin reductase activity in the erythrocytes of Oncorhynchus mykiss
Authors:M C Saleh  S McConkey
Institution:1. Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada
Abstract:Methemoglobin is oxidized hemoglobin that cannot bind to or dissociate from oxygen. In fish, it is most commonly caused by exposure to excess nitrites and can lead to abnormal swimming, buoyancy, or death. The methemoglobin concentration in mammals is determined by the balance of oxidizing agents versus reducing enzymes in erythrocytes. The objective of our studies was to characterize the enzymes that reduce methemoglobin in fish erythrocytes. Whole blood was collected from healthy rainbow trout. Methemoglobin was induced in vitro by NaNO2 exposure. Methemoglobin reduction in controls was compared to reduction in samples with added NADH, NADPH, or NADPH and methylene blue. Rainbow trout whole blood was also fractionated into cytosol, microsomal, and mitochondria/plasma membranes/nuclei fractions. The fractions were compared for NADH-dependent cytochrome b5 reductase (CB5R) activity and for nitrite induction of methemoglobin. The CB5R activity in rainbow trout erythrocytes was compared to the CB5R activity in equine, feline, and canine erythrocytes. Rainbow trout erythrocytes had significant NADPH methemoglobin reductase activity in the presence of methylene blue (P < 0.001). The CB5R activity was greatest (P < 0.001) in the plasma membrane/mitochondria/nuclei fraction. The CB5R activity in rainbow trout erythrocytes was not significantly different than canine or equine activity but was significantly lower than feline CB5R activity (P < 0.0001). Methemoglobin in rainbow trout erythrocytes can be reduced by CB5R or NADPH-dependent methemoglobin reductase. Unlike mammalian anuclear erythrocytes, which are dependent on soluble CB5R, the nucleated RBCs of rainbow trout use membrane-bound CB5R to reduce methemoglobin.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号