Affiliation: | a University of New England, Department of Agronomy and Soil Science, Armidale, N.S.W. 2351, Australia b NSW Agriculture, Biological and Chemical Research Institute, Rydalmere, N.S.W. 2116, Australia c Auscott Ltd., Narrabri, N.S.W. 2390, Australia d Present address: P.O. Box 130, Warren, N.S.W. 2824, Australia |
Abstract: | Where Vertisols are used for the mechanised production of irrigated cotton, the main pre-planting tillage options are ‘direct listing’ (a ‘controlled traffic-reduced tillage’ treatment with retained ridges), deep ripping (0.45 m deep) and chisel ploughing (0.25 m deep). An experiment was established, on a commercial scale under furrow irrigation, to compare the effects of these treatments on the physical properties (aeration, strength and water content) of a frequently irrigated Vertisol over 3 years. The growth and profitability of three cotton crops and one wheat crop were monitored during this period. The soil was well structured when the experiment commenced. Soil measurements showed that whilst the deep ripped treatment had lower resistance to penetration than the direct listed treatment, it provided a less favourable environment for root growth than the direct listed soil due to prolonged waterlogging after irrigation. An excess of water entered the ripped profile under the prevailing irrigation regime. All treatments had a sodic subsoil that was poorly drained. The chisel ploughed treatment generally behaved in a fashion that was intermediate between the direct listed and deep ripped treatments. The direct listed treatment resulted in higher cotton lint yields and lower land preparation costs, in comparison with deep ripping. Profitability increases were of the order of 11% when the lint value was 1.78 Australian dollars kg−1. The deep ripped soil had more stored water than the other treatments throughout each irrigation cycle, but this potential advantage could not be expressed in terms of better crop yield and improved water use efficiency. A supplementary experiment is needed to evaluate the three tillage options where irrigation water is applied less frequently. |