首页 | 本学科首页   官方微博 | 高级检索  
     

添加调节N和P浓度后的植物残体对土壤呼吸作用、微生物量和养分有效性的影响
作者姓名:T. T. NGUYEN  P. MARSCHNER
摘    要:Microbial activity and nutrient release are known to be influenced by organic matter properties,but it is difficult to separate the effect of C/N ratio from that of C/P ratio because in most plant residues both ratios are either high or low.An incubation experimeut was conducted to investigate the effects of reducing the C/N and C/P ratios of slowly decomposable plant residues (young eucalyptus leaves,mature wheat straw,and sawdust) to those of rapidly decomposable residues (young kikuyu shoots) on soil respiration,microbial biomass,and N and P availability.The C/N and C/P ratios of the former were adjusted to 15 and 89,respectively,by adding N as (NH4)2SO4,P as KH2PO4 or both and residues were added at 10 g C kg-1 to a silt loam.Soil respiration was measured over 21 d;microbial biomass C (MBC) and available N and P were measured on days 0,7,and 21.Compared to the unamended soil,addition of kikuyu increased cumulative respiration 20-fold,MBC concentration 4 to 8-fold,and available P concentration up to 4-fold,whereas the increase in available N concentration was small and transient.Cumulative respiration and MBC concentration were low in the sawdust-amended soil and were not influenced by reducing the C/N and C/P ratios.Cumulative respiration with original wheat and eucalyptus was 30%-40% of that with kikuyu.Reducing the C/N ratio alone or both C/N and C/P ratios increased cumulative respiration and MBC concentration 2-fold compared to the original wheat and eucalyptus,whereas reducing the C/P ratio had little effect.Throughout the experiment,the available N concentration after addition of residues with reduced C/N ratio increased in the following order of eucalyptus < wheat < sawdust.By independently lowering the C/N and C/P ratios,microbial activity was more limited by C and N than P.However,lowering the C/N ratio of very slowly decomposable sawdust had no effect on soil respiration and MBC concentration,suggesting that other properties such as concentration of poorly decomposable C compounds limited decomposition.

关 键 词:C/N ratio  C/P ratio  microbial activity  nutrient immobilisation  nutrient mineralisation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《土壤圈》浏览原始摘要信息
点击此处可从《土壤圈》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号