首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of pasture applied biosolids on performance and mineral status of grazing beef heifers
Authors:Tiffany M E  McDowell L R  O'Connor G A  Martin F G  Wilkinson N S  Cardoso E C  Percival S S  Rabiansky P A
Institution:Department of Animal Science, University of Florida, Gainesville 32611-0910, USA.
Abstract:Angus x Hereford heifers (n = 50) were randomly assigned to bahiagrass pastures treated with biosolids varying in mineral content and evaluated for mineral status, with special attention to Cu. Biosolids and NH4NO3 were all applied at the rate of either 179 kg N/ha (X) or twice this (2X). Fertilizer was applied to .81-ha pastures for the following treatments: 1) Baltimore biosolids (1X = 179 kg N/ha); 2) Baltimore biosolids (2X = 358 kg N/ha); 3) Tampa biosolids (1X = 179 kg N/ha); 4) Tampa biosolids (2X = 358 kg N/ha); or 5) control NH4NO3 (1X = 179 kg N/ha) applied at two times. Pastures were divided into five blocks with each treatment represented once in each block. Copper loads varied from 8.8 to 42.2 kg/ha, and Mo loads varied from .27 to 1.11 kg/ha. Heifers (two per pasture) grazed their assigned pastures exclusively for 176 d. Liver biopsies were taken from all animals at d 1, 99, and 176, and blood samples on d 1, 50, 99, 135, and 176. Liver and plasma were analyzed for selected mineral contents, and blood was analyzed for hemoglobin and hematocrit. Experimental animals were generally low in mineral status when assigned to pastures and deficient in Se and P. By d 50, plasma Ca, Mg, Se, P, and Zn were adequate for all treatments. Plasma Cu declined (P < .03) for all treatments from d 50 to 176. Plasma Cu reflected depleted liver Cu storage, with the two Tampa and highest Baltimore treatment means lower in plasma Cu than the control at 176 d. Liver Fe concentrations were adequate for all treatments, and Mo concentrations (< 2.18 mg/kg) did not approach levels indicative of toxicity. Liver Cu declined (P < .05) with time for all treatments. By d 99, animals receiving the two Baltimore treatments and the lowest Tampa application rate had lower (P < .05) liver Cu than the control, and all treatments were lower at 176 d. The decline of animal Cu status (liver and plasma) reflects the low Cu status of bahiagrass and the possibility of high forage S (.30 to .47%) interfering with Cu metabolism. Forage Mo was low but was slightly higher in biosolids-treated pastures. High levels of biosolids applications to bahiagrass pastures were not detrimental to mineral status except Cu, which had a tendency to decline in plasma and for all biosolids treatments declined in liver.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号