首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community
Affiliation:1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China;2. Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW 2650, Australia;3. Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China;1. University of Leuven, Plant Conservation and Population Biology, Biology Department, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium;2. Norwegian University of Science and Technology, Department of Biology, Høgskoleringen 5, 7491 Trondheim, Norway
Abstract:Arbuscular mycorrhizal fungi (AMF) and N2-fixing legumes can alter the community structure of grasses. However, the effect of AMF, N2-fixing legumes, and their interaction on the dynamics of prairie grass communities remains unclear. The aim of this study was to clarify the influence of two AMF (Glomus cubense and Glomus sp.) and two legumes (Medicago sativa and Dalea purpurea) on the competitive relationship between three native cool-season (Elymus canadensis, Elymus trachycaulus ssp. subsecundus, and Elymus lanceolatus ssp. lanceolatus) and two native warm-season species of grasses (Schizachyrium scoparium and Bouteloua gracilis). Results show that AMF and legumes altered the community structure of the grasses. G. cubense favoured the productivity of warm-season B. gracilis when growing with M. sativa. This might be related to a negative impact of G. cubense on the nitrogen-fixing activity of M. sativa and to a lower N-use efficiency of E. canadensis and E. lanceolatus ssp. lanceolatus under competition. This suggested an increased ability of B. gracilis to use the available N resource as affected by more competitive species, whereas Glomus sp. reduced the competitive ability of this grass when associated with M. sativa. The decrease in B. gracilis biomass was thus likely caused by enhancement of P uptake by M. sativa over this grass. Glomus sp. was beneficial to S. scoparium, another warm-season species, in the absence of legumes, and this may be attributed to improved P-use efficiency of this grass under competition with cool season-grasses. In contrast, AMF and legumes were not beneficial for the cool season grasses. G. cubense depressed the growth of E. trachycaulus ssp. subsecundus, and M. sativa decreased nutrient uptake by cool-season native grasses. This study shows that beneficial effect of the arbuscular mycorrhizal symbiosis on the coexistence of warm-season grasses with more competitive cool-season grasses depends on the identity of the AMF symbiont, the presence of legume species, and nitrogen resource availability that was affected by the most competitive species or P-use efficiency of warm season species.
Keywords:Competition  Legume  Nutrient uptake  Nutrient-use efficiency  Prairie grass dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号