摘 要: | 针对梅花图像,提出了适合其颜色、形状、纹理3方面特征的描述方法。在颜色特征提取方面,通过直方图归类的结果,提出了适合描述梅花图像色彩特征的方法。改进了对形状特征进行描述的平坦度算法,在计算平坦度时只计算花朵区域,没有统计背景区域,使算法得到简化,并且不影响最终的效果。改进了灰度共生矩阵的计算方法,首先提取出花朵区域的最小外接长方形,以此作为新的图像的长和宽,降低灰度共生矩阵的计算量;然后再计算4个角度的灰度共生矩阵,累加相应的矩阵元素除以4求出4个矩阵的平均矩阵,作为参与运算的灰度共生矩阵;计算该矩阵的相关参数作为纹理特征的描述。最后对提取到的19个特征采用SVM分类器进行分类和识别。对 660幅梅花图像(每个品种60幅,11个品种)进行测试,330幅作为训练样本,另外330幅作为测试样本。实验结果表明,在对SVM分类器做交叉验证后,识别率可达到93.94%。该识别系统具有较高的识别准确率和稳定性,能够起到知识普及的作用,减轻专业人员的负担,增加梅花的鉴赏性。
|