首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zooplankton and epibenthic fauna in shrimp ponds: factors influencing assemblage dynamics
Authors:Francis E Coman  Rod M Connolly  & Nigel P Preston
Institution:CSIRO Division of Marine Research, PO Box 120, Cleveland, 4163, Australia;School of Environmental and Applied Sciences, Gold Coast campus, Griffith University, PMB 50, Gold Coast Mail Centre, Queensland, 9726, Australia
Abstract:The assemblage composition, biomass and dynamics of zooplankton and epibenthos were examined in a commercial shrimp (penaeid prawn) pond in subtropical Australia. Physicochemical characteristics of the pond water were measured concurrently. Numbers and biomass of zooplankton in the surface tows (140 μm mesh) varied from 111.7 ind. L?1 (324 μg L?1) to 8.3 ind. L?1 (44.2 μg L?1). Immediately after the ponds were stocked with shrimp postlarvae there was a rapid decline in zooplankton numbers, particularly the dominant larger copepods. We attributed this to predation by the shrimp postlarvae. Subsequent peaks in zooplankton numbers were principally due to barnacle nauplii. Changes in abundance and biomass of the zooplankton assemblage were not correlated with physicochemical characteristics. Epibenthic faunal abundance in the beam trawls (1 mm mesh) peaked at 14 ind. m?2 and the biomass at 0.8 g m?2. Unlike zooplankton, the peaks in abundance of epibenthos did not correspond to the peaks in biomass. This was due to the large differences in the size of the dominant taxa across the season. Sergestids (Acetes sibogae) and amphipods were the most abundant taxa in beam trawl samples, with amphipods abundance increasing towards the end of the growout. Negative correlations were found between epibenthos abundance and pH and temperature. These relationships were strongly influenced by the high abundances of amphipods and may reflect an effect on the growth of macroalgae in the pond rather than a direct effect on the epibenthos. No correlations were found between epibenthic fauna biomass and physicochemical parameters. Abundances of epibenthic fauna were not related to zooplankton densities, indicating that this source of food was not likely to be a limiting factor. Neither the pond water exchange regime nor moon phase could explain changes in abundances of zooplankton or epibenthos assemblages. Zooplankton clearly contribute to the nutrition of shrimp postlarvae immediately after stocking. The establishment of an abundant assemblage of zooplankton before stocking shrimp postlarvae would appear to be beneficial, if not essential. Later in the season, zooplankton and epibenthos apparently contribute little to shrimp biomass. Owing to their relatively low biomass, the consumption of shrimp feeds by epibenthos is likely to be insignificant compared with that of the shrimp.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号