首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and characterization of N-acylaniline derivatives as potential chemical hybridizing agents (CHAs) for wheat (Triticum aestivum L.)
Authors:Chakraborty Kajal  Devakumar C
Institution:Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 110012, India. kajal_iari@yahoo.com
Abstract:Induction of male sterility by deployment of chemical hybridizing agents (CHAs) are important in heterosis breeding of self-pollinated crops like wheat, wherein the male and female organs are in the same flower. Taking a lead from the earlier work on rice, a total of 25 N-acylanilines comprising of malonanilates, acetoacetanilides, and acetanilides (including halogenated acetanilides) were synthesized and screened as CHAs on three genotypes of wheat, viz., PBW 343, HD 2046, and HD 2733 at 1500 ppm in the winter of 2001-2002. The N-acylanilines containing variations at the acyl and aromatic domain were synthesized by condensation of substituted anilines with appropriate diesters, acid chlorides, or monoesters. The test compounds with highly electronegative groups such as F/Br at the para position of the aryl ring were identified as the most potent CHAs, causing higher induction of male sterility. A variation of N-substitution at the side chain generally furnished analogues like 4'-fluoroacetoacetanilide (7) and ethyl 4'-fluoromalonanilate (1), which induced 89.12 and 84.66% male sterility, respectively, in PBW 343. Among halogenated acetanilides, the increasing number of chlorine atoms in the side chain led to an increase in the activity of 4'-fluoro (23) and 4'-bromo (24) derivatives of trichoroacetanilides, which induced >87% male sterility. Quantitative structure-activity relationship (QSAR) models indicated the positive contributions of the field effect exemplified by the Swain-Lupton constant (Fp) and negative contributions of the Swain-Lupton resonance constant (R) for the aromatic substitution. The positive influences of parachor (P) for the acyl domain have been underlined. These leads will be significant in explaining the CHA fit in the macromolecular receptor site. The CHAs appeared to act by causing an imbalance in the acid-base equilibrium in pollen mother cells resulting in dissolution of the callose wall by premature callase secretion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号