首页 | 本学科首页   官方微博 | 高级检索  
     


Detecting and Segregating Black Tip‐Damaged Wheat Kernels Using Visible and Near‐Infrared Spectroscopy
Authors:Paul R. Armstrong  Elizabeth B. Maghirang  Tom C. Pearson
Abstract:
Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated with near‐infrared reflectance spectroscopy (NIRS) and silicon light‐emitting‐diode (LED) based instruments. The two instruments tested, a single‐kernel NIRS instrument (SKNIRS) and a silicon LED‐based single‐kernel high‐speed sorter (SiLED‐SKS) were both developed by the Stored Product Insect and Engineering Research Unit, Center for Grain and Animal Health Research, USDA Agricultural Research Service. BTD was classified into four levels for the study ranging from sound, symptomatic (BTS) at two levels, and damaged (BTD). Discriminant analysis models for the SKNIRS instrument could distinguish sound undamaged kernels well, correctly classifying kernels 80% of the time. Damaged kernels were classified with 67% accuracy and symptomatic kernels at about 44%. Higher classification accuracy (81–87%) was obtained by creating only two groupings: 1) combined sound and lightly symptomatic kernels and 2) combined heavily symptomatic and damaged kernels. A linear regression model was developed from the SiLED‐SKS sorted fractions to predict the percentage of combined BTS and BTD kernels in a sample. The model had an R2 of 0.64 and a standard error of prediction of 7.4%, showing it had some measurement ability for BTS and BTD. The SiLED‐SKS correctly classified and sorted out 90% of BTD and 66% of BTS for all 28 samples after three passes through the sorter. These instruments can serve as important tools for plant breeders and grading facilities of the wheat industry that require timely and objective determination and sorting of different levels of black tip present in wheat samples.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号