首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lessons from 10 years of stakeholder adoption of a soil bioassay for assessing the risk of spinach Fusarium wilt
Authors:Sanjaya Gyawali  Michael L Derie  Emily W Gatch  Dipak Sharma-Poudyal  Lindsey J du Toit
Institution:1. Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA, USA;2. Edmonds Community College, Edmonds, WA, USA;3. Oregon Department of Agriculture, Salem, OR, USA
Abstract:Although the maritime Pacific Northwest (PNW) is the only region of the United States suitable climatically for spinach seed production, the acidic soils are highly conducive to spinach Fusarium wilt caused by Fusarium oxysporum f. sp. spinaciae. A soil bioassay developed to quantify the risk of spinach Fusarium wilt in fields has been offered to seed growers annually since 2010. Soil sampled from growers' fields each winter was planted with highly susceptible, moderately susceptible, and partially resistant spinach inbred lines, and the plants rated weekly to calculate a Fusarium wilt severity index (FWSI) and the area under the disease progress curve (AUDPC). Results for 147 soils tested from 2010 to 2013 have been published. This study examined results for an additional 248 soils tested from 2014 to 2019 with the bioassay modified to include an option of agricultural limestone amendment to the soils tested. FWSI and AUDPC were affected significantly (p < .001) by the main effects of soil and spinach inbred line, and the interaction of these factors. Correlation analyses showed a range in degree of association of FWSI and AUDPC with spinach seed crop rotation duration and soil properties, depending on the spinach inbred line (r = ?.255 to –.267, n = 172 soils with characteristics suitable for correlation analyses). Stepwise regression models for 172 soils with relevant parameters for regression analyses identified spinach seed crop rotation interval, rate of agricultural limestone amendment, soil pH, and soil Fe, Mn, and Zn concentrations as most strongly associated with FWSI and AUDPC. However, the models accounted for ≤33.4% (R2) of the variability in Fusarium wilt risk. The soil bioassay remains a primary tool for spinach seed growers to select fields with low risk of Fusarium wilt.
Keywords:Fusarium wilt  regression  risk assessment  seed production  soil bioassay  spinach
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号