Affiliation: | 1.State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China ;2.School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia ;3.Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, NSW, Menangle, NSW, 2568, Australia ;4.State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China ;5.School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China ; |
Abstract: | Purpose Intensive long-term management practices in forest ecosystems can markedly influence soils’ physicochemical and microbial properties. However, their effects on the magnitude of nutrient pools and activities of enzymes regarding nutrient cycling in subtropical forest soils remain unclear. This study aimed to examine effects of long-term intensive management (organic mulching and chemical fertilization) on concentrations of different C, N, and P fractions and activities of enzymes involved with nutrient cycling in a subtropical Lei bamboo (Phyllostachys violascens) forest soil. Materials and methodsSoil samples were taken from a chronosequence of Lei bamboo forests with intensive management spanning 0, 5, 10, and 15 years. Concentrations of various forms of C, N, and P, as well as activities of β-glucosidase, cellobiohydrolase, urease, protease, and acid phosphatase were measured. Results and discussionThe results revealed that the concentrations of different classes of C (water-soluble organic C, hot-water-soluble organic C, and readily oxidizable C), N (NH4+-N, NO3?-N, and water-soluble organic N), and P [resin-inorganic P (Pi), NaHCO3-Pi, NaHCO3-organic P (Po), NaOH-Pi, NaOH-Po, HCl-Pi, and residual-P] were enhanced markedly with prolonged duration of intensive management. Furthermore, activities of β-glucosidase, cellobiohydrolase, urease, protease, and acid phosphatase were increased following a 5-year treatment, while they were markedly reduced from 5- to the 15-year treatments. The 15 years of intensive management significantly reduced microbial biomass C and N concentrations by 8.2% and 31.9%, respectively, compared to the control. ConclusionsWe concluded that long-term intensive management led to the accumulation of C, N, and P, while it negatively impacted microbial biomass and activities of enzymes involved in nutrient cycling in subtropical Lei bamboo forest soils. Consequently, a reduction in chemical fertilizers should be considered toward the long-term sustainable development of subtropical Lei bamboo forests. |