首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   12篇
  国内免费   1篇
  1篇
综合类   2篇
水产渔业   44篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  1999年   1篇
  1998年   3篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
Copepods are the natural food items for marine fish larvae but are still difficult to be cultured on a continuous basis. Therefore, suitable storage techniques for copepod subitaneous eggs are of great interest. Cold‐stored copepod embryos still develop and retain a physiological activity during the cold storage period. As a consequence, their nutritional quality may change over the time of storage with these changes possibly affecting both eggs viability and larval fish survival and development. In this study, the clownfish, Amphiprion polymnus, was used as an experimental model to compare, for the first time, the effects of diets based on enriched rotifers and Artemia (control), Acartia tonsa copepods of a continuous culture and A. tonsa originated from 6 months cold‐stored eggs. The effects of the different diets were tested through morphometric, molecular and biochemical approach. This study demonstrated that after a 6 months cold storage period, the quality of copepods obtained from those eggs was suboptimal for A. polymnus larval rearing. In fact, larvae fed those copepods showed lower growth and survival performances respect to the other experimental groups.  相似文献   
3.
The copepod Cyclopina kasignete is a potential live food in aquaculture and its fatty acid components and digestive enzymes were investigated. Three dry algal products (mixed algae, Melosira sp. and Nannochloropsis oculata) and two fresh microalgae (Tisochrysis lutea and N. oculata) were fed to the copepod for 30 days. The essential fatty acids (EFA) in copepods were altered by feeding different types of dry algae. The copepod fed dry Melosira sp. or fresh T. lutea contained higher eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (ARA), protease and trypsin than fed on other algae. The copepod contained a similar fatty acid profile and digestive enzymes by feeding either dry or fresh N. oculata. Between fresh algal species, the copepod fed T. lutea contained higher EPA, DHA and ARA than that fed fresh N. oculata. The amounts of EPA and DHA in copepods were more concentrated than those in the dietary algae, suggesting that the copepod has the ability to accumulate some EFA. This study indicates that dietary algae can modify the nutritional composition and in digestive enzymes copepods, which in turn may be able to transfer suitable nutrients and digestive enzymes to fish larvae in aquaculture.  相似文献   
4.
The biological benefits of copepods as live feed for marine finfish larvae have already been well established in the literature. Copepods have better biochemical compositions that improve growth, reduce malpigmentations and allow successful farming of ‘new’ marine finfish species. However, their current usage is quite limited. One of the reasons has been lack of economic knowledge concerning the cost‐effectiveness of copepod application compared to other commonly used feed items such as the brine shrimp Artemia. In this study, a cost‐effectiveness analysis is made on two alternative live feed items (copepods and Artemia) in juvenile turbot farming. Unit cost of production and profit are compared between the two feeding regimes using a unique data set from an existing turbot fry production facility in Denmark. The result reveals that copepods are not only biochemically superior but they are also economically a cost‐effective alternative. Thus, a commercial use of copepods will significantly reduce the production costs for turbot. Furthermore, the unexploited economic potential can be utilized for the successful farming of other high‐valued marine finfish species such as tuna, flounders, cod, sole and halibut. Generally, the biochemical superiority coupled with economic benefits can lead to the commercial utilization of copepods as complementary live feed in the short run and in some situations as a substitute in the long run.  相似文献   
5.
The lateral transport of organic carbon in large grazing copepods ( Neocalanus cristatus, Neocalanus flemingeri, Neocalanus plumchrus and Eucalanus bungii ) from the Oyashio area to the mixed water region (MWR) by the coastal Oyashio intrusion was estimated using the data of VMPS (vertical multiple plankton sampler) and 1500 dbar-referred geostrophic transport from the CTD (conductivity temperature depth sensor) data of five cruises during June 2001 to April 2002 on a repeat observation section OICE (Oyashio Intensive observation line off Cape Erimo), which extends southeastward from Hokkaido Island, Japan. The transport to MWR by the coastal Oyashio intrusion was estimated to be 5.3 × 1011 g C for the four species. Data from profiling floats also indicated that the copepods were advected from OICE to MWR by the coastal Oyashio intrusion within about 2 months. This transport is considered to be one of the significant sources of organic carbon in MWR as it is larger than the amount of large zooplankton consumed by Pacific saury ( Cololabis saira ) in MWR, one of the dominant copepod predators in this region.  相似文献   
6.
Atlantic halibut larvae were fed docosohexanoic acid- (DHA) selco enriched Artemia (RH-cysts) or wild zooplankton in duplicate tanks from first-feeding and 60 days onward. The zooplankton were collected from a fertilized sea water pond and consisted mainly of different stages of Eurytemora affinis and Centropages hamatus . There were no differences in survival, or in growth during the first 45 days of feeding, between larvae fed the two prey items, but the larvae fed Artemia showed much higher incidence of malpigmentation and impaired eye migration than larvae fed zooplankton. The prey organisms contained similar amounts of dry matter and protein, but Artemia was higher in lipid and glycogen than the zooplankton. Larvae fed Artemia were higher in both glycogen and lipid than the zooplankton-fed larvae towards the end of the feeding period. There were large differences between the prey organisms in the concentrations of essential fatty acids (% of total fatty acids) which was reflected in the fatty acid composition of the larval body. It is concluded that the macronutrient composition of Artemia in the present study was probably within the optimal range for promotion of growth and survival in young Atlantic halibut. The concentration of n-3 HUFA, and especially DHA, is however, very much lower in enriched Artemia than in copepods, and may be one of the factors triggering developmental errors in Atlantic halibut.  相似文献   
7.
Copepods have proven to be an ideal source of live food for the production of marine fish larvae in aquaculture. Therefore, there is a need to develop new methods for production and storage of copepod eggs that can be hatched and used at fish farms. In the present study quiescent eggs of Acartia tonsa were stored for periods up to 35 weeks at different temperatures, salinities and oxygen conditions in a full factorial experiment. None of these storage conditions seemed to induce diapause in eggs even though this has been reported by other authors. The most promising storage conditions were those involving low temperature (<5°C), medium salinity (10–20 ppt) and anoxia. The practical aspects of these results for aquaculture are discussed.  相似文献   
8.
We examined the interannual variation in Neocalanus copepod biomass in the Oyashio waters in spring and summer from 1972 to 1999. In the mid‐1970s, mesozooplankton biomass in spring was high; however, it decreased significantly in the late 1970s. The timing of the decrease in mesozooplankton biomass corresponded to the 1976/77 climatic regime shift. The biomass of N. flemingeri, which dominated the Neocalanus community, was roughly constant from 1980 to 1999. Although species‐level estimates of Neocalanus biomass were not available for the 1970s, a previous study reported that Neocalanus copepods were the predominant mesozooplankton in the Oyashio waters in spring during the 1970s. Neocalanus copepods dominated the mesozooplankton community throughout the 1970s, and their biomass decreased in the late 1970s. Springtime net community production, an index of new production, also decreased in the late 1970s. We suggest that the reduction in new production negatively affected Neocalanus food availability, resulting decreased copepod biomass. New production may have been limited by a combination of subsurface iron supplies, increased vertical density gradient, and reduced vertical water mixing in winter, which resulted in diminished iron entrainment in winter. In summer, mesozooplankton biomass significantly decreased and increased synchronously with the 1976/77 and 1988/89 climatic regime shifts. The biomass of N. plumchrus, which dominated the Neocalanus community, was low in the 1980s and increased in the early 1990s. The biomass of the second‐most dominant copepod, N. cristatus, also increased in the early 1990s. Neocalanus copepods were reported to be a dominant component of the mesozooplankton community in the 1970s; Neocalanus biomass was high in the mid‐1970s and decreased in the late 1970s. Japanese sardine (Sardinops melanostictus), an important predator of Neocalanus copepods, exhibited interannual variation in standing stock that was inversely related to mesozooplankton biomass. At their peak in 1984, sardines consumed 32–138% of the daily Neocalanus production during summer. Therefore, predation pressure on Neocalanus by Japanese sardine is likely to affect interannual variation in mesozooplankton biomass during the summer.  相似文献   
9.
Rotifers and Artemia salina nauplii are the most widely used live prey for newly hatched larvae, but they do not always promote optimal survival and growth. Alternative food sources such as copepods, which bypass these inadequacies and promote adequate growth, are needed and they are viewed with considerable interest by the scientific community. The aim of the present study was to test two different diets [rotifers and A. salina nauplii (group A) and a mixture (group B) of rotifers/Tisbe spp. copepods and A. salina nauplii/copepods] during the larval rearing of the striped blenny Meiacanthus grammistes. The analysis of the survival rate, size (total length and wet weight) and metamorphosis time during the larval phase of this species showed that Tisbe spp. administration can significantly improve larval survival and growth and also reduce the metamorphosis time. The results obtained are related to the fatty acid content of the live prey used and are essential in order to improve the captive production of M. grammistes through a closed system and, in turn, to preserve natural stocks.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号