首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
  国内免费   1篇
农学   1篇
基础科学   2篇
  3篇
综合类   4篇
水产渔业   13篇
园艺   2篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   7篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2013年   2篇
排序方式: 共有25条查询结果,搜索用时 16 毫秒
1.
Aquaponics is a method of food production, growing fish and vegetables in a recirculating aquaculture system. Aquaponics uses the water from the fish to feed the plants in a totally natural way and like hydroponics, aquaponics is considered to be more sustainable as more plants can be grown per square metre compared to normal agriculture. However, as is the case with normal agriculture, in aquaponics plants are grown within horizontally. In aquaponics, using the UVI system, the ratio between fish tanks:filters:plant tanks is 2:1:5 which means that the plant tanks are occupying close to half of the production space. In order to reduce the spatial requirement for plants, which would make production even more sustainable, this research investigates aspects of combining living wall and vertical farming technologies in aquaponics. It is considered that by growing the plants vertically less space would be required. In this research living wall system is investigated but the main focus is on the potentials of using various inert substrates in the living wall systems for vertical aquaponics. The results showed that a pot system performs better in terms of management of the systems. With regard to substrates, horticultural grade coconut fibre and horticultural grade mineral wool outperformed other substrates.  相似文献   
2.
The influence of elevated levels of micronutrients on the growth and flowering of French marigold (Tagetes patula L.) was investigated. Plants were grown with nutrient solution containing 0.25, 0.5, 1, 2, 3, 4, 5, or 6 mM boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), or zinc (Zn) and toxicity development was monitored. The threshold micronutrient concentrations that induced visible foliar toxicity symptoms were 0.5 mM B, 4 mM Cu, 4 mM Fe, 2 mM Mn, 1 mM Mo, and 5 mM Zn. The dry matter yields during the 5 week experimental period were reduced when micronutrient concentrations exceeded 0.5 mM B, 3 mM Cu, 3 mM Fe, 6 mM Mn, 0.5 mM Mo, and 5 mM Zn in the fertilizer solution. Leaf chlorophyll contents decreased when the nutrient solution concentrations of Cu, Fe, and Mn were greater than 0.5 mM, 3 mM, and 2 mM, respectively. Visual toxicity symptoms of the six micronutrients were characterized.  相似文献   
3.
We investigated the effects of plant density on the welfare of African catfish, Clarias gariepinus, in coupled aquaponics over 85 days. The moderate density (mpd) of basil, Ocimum basilicum, was compared with the high density (hpd) and control (n = 0). The behavior was analyzed by visual and video observations, and after the application of induced stressors, skin injuries, blood glucose, lactate, and plasma cortisol responses were considered. The hpd fish showed the least activity (control: visual 77.8%, video 81.6%; mpd: 74.6%, 82.6%; hpd: 63.2% [p < 0.05], 78.8%). High agonistic behavior (control: 5, 131; mpd: 4, 57; hpd: 1, 45) and the highest number of injuries (control: 3.9; mpd: 2.9; hpd: 3.4) were observed in the control. Glucose and lactate levels did not differ significantly (control: 5.5, 2.6 mmol/L; mpd: 5.6, 2.7 mmol/L; hpd: 5.3, 2.6 mmol/L); however, cortisol levels did (control: 18.8 ng/mL, mpd: 19.9 ng/mL, hpd: 25.8 ng/mL). pH adjustment led to additional stress, resulting in temporal cortisol alterations. While in the control and mpd, low cortisol levels were followed by acute responses and downregulation, the hpd fish showed prior elevation and lagged an acute response. However, comparing injuries and behavioral patterns with control, aquaponics with high basil density influenced African catfish positively.  相似文献   
4.
This study was conducted to determine the biological filtration capabilities of some culinary herbs co‐cultured with lemon fin barb hybrid in a nutrient film technique (NFT) recirculating aquaponic system. Lemon fin barb hybrid (Hypsibarbus wetmorei ♂ × Barbonymus gonionotus ♀) fingerlings were stocked in twelve 2‐tonne fibreglass tanks at 25 fish per tank and co‐cultured with Chinese celery (Apium graveolens var. secalinum Alef.), coriander (Coriandrum sativum) and peppermint (Mentha × piperita) for seven weeks. The impacts of the waste generated by the fish on the water quality, the filtration capability of the herbs and the ability of fish and herbs to retain nutrients (NPK) were also estimated. All the herbs showed water purifying potentials to varying degrees as significantly lower levels of nitrogenous compounds (NH3‐N, NO3‐N, NO2‐N) were observed after the herbal filtration. The plant growth seemed to be affected by their ability to absorb nutrients and consequently purify the culture medium. Interestingly, the lemon fin barb hybrid also showed significant differences in terms of weight gain, but the nutrient retention among fish treatments was not statistically different. The plants absorbed less phosphorus and potassium than the fish. After computing for the total system percentage of NPK recovered, nitrogen was the most retained nutrient. The peppermint showed superiority in terms of gross biomass and water purifying potential compared to the Chinese celery and coriander.  相似文献   
5.
生物浮床技术在水产养殖中的应用概况   总被引:1,自引:0,他引:1  
生物浮床技术作为生物操纵方法的一种,是一种原位生态修复技术,它是利用浮床植物根系或者茎叶吸收、富集、降解或固定受污染水体中的(有机)污染物,通过对植物的收割(收获)以实现降低或者消除水体污染物,达到净化水质、修复环境的目的.综述了生物浮床技术的原理与特点及生物浮床的应用效果,并结合生物浮床的技术特点探讨其在水产养殖应用中存在的问题,最后对生物浮床技术在水产养殖中的应用前景进行了展望.  相似文献   
6.
Aquaponics is an innovative smart and sustainable production system for integrating aquaculture with hydroponic vegetable crops, that can play a crucial role in the future of environmental and socio-economic sustainability in smart cities. These cities aim mobilize all knowledge centers and Information and Communication Technologies (ICT) into innovation hubs in order to strengthen the socio-economic progress.Nowadays the production, transport and logistics of food requires high costs and transport and harvest from other parts of the planet to the cities, associated to intensive polluting technologies. Aquaponics can play a key role enabling local production, fresh, free of pesticides and healthy with short supply chains in the cities.Despite the technical developments in aquaponics there is still no integrated approach to analyze their potential as urban agriculture. This paper aims to contextualize the aquaponics as urban farming and analyze the necessary developments in that field, namely, the need of an integrated approach from producers to consumers on smart cities.So, this paper analyzes the importance of Theory of Planned Behavior on aquaponics stakeholder’s decision making process and the efficiency analysis in aquaponics systems by parametric (Data Envelopment Analysis), and non-parametric methods (stochastic frontier production) as an integrated and innovative approach.  相似文献   
7.
为评估不同种养密度和投喂频率对鱼菜共生系统中鲫鱼生长及品质的影响,建立温室基质栽培式鱼菜共生系统(鲫鱼+生菜),设置种植密度分别为28(A1)、42(A2)、56(A3)株·m-2;养殖密度分别为8(B1)、10(B2)、12(B3)kg·m-3;饲料投喂频率分别为1(C1)、2(C2)、3(C3)次·d-1,以明确鱼...  相似文献   
8.
塘田联作对池塘水质及罗氏沼虾生长的影响   总被引:1,自引:0,他引:1  
为探索节能减排的池塘养殖新模式,开展了罗氏沼虾(Macrobrachium rosenbergii)-水稻塘田联作试验。以罗氏沼虾-水稻联作试验塘和罗氏沼虾单养对照塘各1口为研究对象,监测池塘的主要水环境因子动态及罗氏沼虾生长指标,分析塘田联作模式对池塘水质及罗氏沼虾生长的影响。试验塘被改造为养殖区与稻田两部分以模拟塘田联作,每部分面积各占50%。水稻于2018年4月22日机栽完毕,5月12日放养虾苗,6月28日起进行水质和生长监测。结果显示:1)试验期间试验塘平均水温比对照塘低0.82℃;2)试验塘水体无机氮(NH4+-N、NO2--N、NO3--N)、活性磷酸盐-磷(PO43--P)、总悬浮颗粒物(TPM)、颗粒有机物(POM)、颗粒无机物(PIM)浓度、化学需氧量(COD)和变异系数(CV)在整个养殖期间均低于对照塘,且NH4+-N、COD与对照塘差异显著(P<0.05),而对照塘对应水质指标在养殖后期均出现大幅升高;3)试验塘特定生长率和增重率分别为3.07%·d-1和459.40%,而对照塘分别为2.86%·d-1和397.44%。结果表明,塘田联作能降低夏季高温期池塘水温及水体氮(N)、磷(P)浓度与COD,并保持水质稳定,促进罗氏沼虾的生长。  相似文献   
9.
This study was carried out to investigate the viability of utilizing aquaponic technology in culturing local fish: snakehead Channa striata and water spinach Ipomoea aquatica. Snakehead was raised for 150 days in a floating plastic pond with an area of 3 × 4 × 1.2 m having a capacity volume of ∼14.4 m3. Fish were randomly arranged into two experimental systems at density of ∼0.3 kg fingerlings/m3 e.g. SAQ – snakehead in aquaponics; SC – snakehead in normal system where control ponds were continuously aerated with ∼20% daily exchange of water. Fish were fed commercial feed twice a day. Initial results showed that in aquaponics compared with normal systems the SAQ efficiency exhibited 70% water exchange; five times lower in NH3 level: (0.01–0.03 mg/L vs. 0.05–0.16 mg/L); three times lower in NO2 level: (0.28–0.58 mg/L vs. 0.56–2.59 mg/L). Snakehead production was significantly higher in aquaponics with higher survival ratio of fish: 99.76% vs. 71.40%; ∼3 times higher in fish yield: 366 kg vs. 130 kg. The production of water spinach was also elevated in aquaponics versus normal systems 406.4 kg vs. 188 kg. The total income from snakehead and water spinach in SAQ were 4 times higher than in normal farming systems: 1219.42 $US and 307.04 $US. Based on the results of the current study, it is expected that applying aquaponics utilizing local available materials and species will enhance the sustainability of the overall system and keep the aquaponics lasting and expanding to social life especially on sustainable culturing snakehead Channa striata.  相似文献   
10.
Aquaponics is a recirculating aquaculture system (RAS), where plants and aquatic animals are grown using the same water. In these systems, plants act as part of biological filters. The cultivation of O. basilicum, Menta x piperita and M. spicata is commonly integrated to the production of O. niloticus in aquaponics. The aim of this study was to evaluate the ability of these herbs as part of biological filters for tilapia intensive production in aquaponics. Various physicochemical parameters were evaluated as water quality indicators. N and P content in the different elements of the system were also measured. Results showed that for tilapia growing the three herbaceous evaluated could be used as part of the biological filters in aquaponics, because they remove significant concentration in nitrogen compounds and phosphates; however, there were no differences among species. There was a positive relationship between the time and the levels of NH4 and therefore NO3? in the water. The pH, temperature and dissolved oxygen were kept at appropriate ranges for tilapia. The electrical conductivity and total dissolved solids were in suitable levels for growing herbaceous, which adapted to flooded substrates, with water constantly moving and high concentration of dissolved oxygen. A key parameter to consider is the oxygen concentration in water when herbaceous is used in aquaponics, due to the high input of this element for these species need, especially basil. Tilapia largely incorporated N and P entering the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号