首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
林业   2篇
农学   1篇
  4篇
综合类   2篇
植物保护   1篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2008年   1篇
  2006年   1篇
  1996年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
基于NEP福建省能源碳足迹分析   总被引:1,自引:0,他引:1  
梅煌伟  黄民生  张如 《安徽农业科学》2012,40(11):6751-6753,6772
借用NEP的碳足迹研究方法,核算了福建省能源消费碳排放足迹,研究了碳排放足迹与经济增长的关系,最后提出相应的政策建议。结果表明,福建省能源消费碳足迹处于盈余状态;煤炭碳足迹最大、比重最高;电力、石化、金属冶炼等高耗能行业限制与否,依然是各级政府决策层考虑的重点;单位GDP碳足迹有所下降,但仍具有较大的下降空间。  相似文献   
2.
将MODIS数据,气象数据与植被数据相结合,利用CASA模型与土壤微生物呼吸模型,计算2001-2010年吉林西部的陆地植被净初级生产力(NPP)和土壤微生物呼吸RH,在此基础上估算了净生态系统生产力(NEP),分析NEP变化规律和原因,估测吉林西部植被碳汇量,结果表明:研究区NPP呈自西向东逐渐增加的趋势;碳源主要分布在通榆、镇赉和大安土地盐碱化比较严重的地区,其植被碳汇量为-160-0gC·m-2·a-1;前郭、扶余、松原、长岭以及白城和镇赉的两个水田灌区的NEP为150-300gC·m-2·a-1,起到碳汇的作用;10年间吉林西部NEP总体上呈波动上升趋势,2010年碳汇能力较2001年增加了47.10gC·m-2·a-1。  相似文献   
3.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   
4.
This paper focuses on the ‘gendered’ politics of economic adjustment exemplified in India’s New Economic Policy (NEP) and interrogates NEP’s tacit appropriation of women’s labour (productive and reproductive) to maintain social reproduction during times of economic insecurity. Through a micro­study of an ‘Oraon’ village in the Jharkand region of Bihar, India, I explore the changing nature of women’s work and gender relations in response to the larger socio­economic transformation initiated by the NEP; and how in turn these changes are mediated through the interacting politics of the gendered ideology of the family and the household, class and ethnicity. Through the analysis of changing gender responsibilities within the household, I critique the ‘unitary model’ approach to household behaviour implicit in the NEP and argue for the need to move beyond it, to address the larger issues of gender equity and empowerment.  相似文献   
5.
西部具有重要的生态地位,而该地区生态平衡却日益受到威胁,这使西部农村居民的环境关心尤其应该受到重视。基于陕北农村调查数据,对2000年修订版NEP量表在西部农村的适用性进行评估,发现照搬原量表使用存在很大问题,对其加以修正后,由6个项目构成的量表具有更高的信度和效度,可构成测量西部农村居民环境关心的有效工具。  相似文献   
6.
Values for annual NEP of micrometeorological tower sites are usually published without an estimate of associated uncertainties. Few authors quantify total uncertainty of annual NEP. Moreover, different methods to assess total uncertainty are applied, usually addressing only one aspect of the uncertainty. This paper presents a robust and easy to apply method to quantify uncertainty of annual totals of Net Ecosystem Productivity (NEP), related to multiple factors involved therein. The method was applied to NEP observations for a Scots pine forest (Loobos) in the Netherlands. Total uncertainty of annual NEP for the Loobos site was on average ±32 g C m−2 a−1 (±8% of NEP), which is a quarter of the standard deviation of annual NEP (127 g C m−2 a−1).  相似文献   
7.
Quantifying the net carbon (C) storage of forest plantations is required to assess their potential to offset fossil fuel emissions. In this study, a biometric approach was used to estimate net ecosystem productivity (NEP) for two monoculture plantations in South China: Acacia crassicarpa and Eucalyptus urophylla. This approach was based on stand-level net primary productivity (NPP, based on direct biometric inventory) and heterotrophic respiration (Rh). In comparisons of Rh determination based on trenching vs. tree girdling, both trenching and tree girdling changed soil temperature and soil moisture relative to undisturbed control plots, and we assess the effects of corrections for disturbances of soil moisture and soil moisture on the estimation of soil CO2 efflux partitioning. Soil microbial biomass and dissolved organic carbon were significantly lower in trenched plots than in tree girdled plots for both plantations. Annual soil CO2 flux in trenched plots (Rh-t) was significantly lower than in tree-girdled plots (Rh-g) in both plantations. The estimates of Rh-t and Rh-g, expressed as a percentage of total soil respiration, were 58 ± 4% and 74 ± 6%, respectively, for A. crassicarpa, and 64 ± 3% and 78 ± 5%, respectively, for E. urophylla. By the end of experiment, the difference in soil CO2 efflux between the trenched plots and tree-girdled plots had become small for both plantations. Annual Rh (mean of the annual Rh-t and Rh-g) and net primary production (NPP) were 470 ± 25 and 800 ± 118 g C m−2 yr−1, respectively, for A. crassicarpa, and 420 ± 35 and 2380 ± 187 g C m−2 yr−2, respectively, for E. urophylla. The two plantations in the developmental stage were large carbon sinks: NEP was 330 ± 76 C m−2 yr−1 for A. crassicarpa and 1960 ± 178 g C m−2 yr−1 for E. urophylla.  相似文献   
8.
净生态系统生产力(NEP)是估算区域植被碳源/汇的重要指标。以青藏高原为研究区,基于光能利用率模型,利用遥感数据、气象数据和基础地理数据测算了2001—2015年草地生态系统净初级生产力(NPP),同时,应用土壤呼吸模型估算了逐月平均土壤呼吸量(Rs),进而估算青藏高原草地净生态系统生产力(NEP)。研究揭示了2001—2015年青藏高原草地生态系统NPP,NEP时空格局及其与气候因子的关系。结果表明:(1)2001—2015年,青藏高原草地生态系统整体表现为碳汇,平均净碳汇总量为1.82×1014 gC/a;(2)2001—2015年青藏高原草地生态系统NEP呈波动增加趋势,年平均值为120.8gC/(m2·a),年平均增长率为0.7gC/(m2·a);(3)研究区草地NPP与温度、降水相关性不显著,NEP与降水、温度均呈负相关。  相似文献   
9.
The net ecosystem productivity (NEP) of boreal aspen is strongly affected by comparative rates of annual potential evapotranspiration (Ea) and precipitation (Pa). Changes in Ea versus Pa during future climate change will likely determine changes in aspen NEP and consequently the magnitude of the carbon sink/source of a significant part of the boreal forest. We hypothesize that the effects of Ea versus Pa on aspen NEP can be modelled with a soil–root–canopy hydraulic resistance scheme coupled to a canopy energy balance closure scheme that determines canopy water status and thereby CO2 uptake. As part of the ecosystem model ecosys, these schemes were used to model diurnal declines in CO2 and latent heat (LE) exchange during a 3-year drought (2001–2003) at the Fluxnet-Canada Research Network (FCRN) southern old aspen site (SOA). These declines were consistent with those measured by eddy covariance (EC) at SOA, except that ecosystem CO2 effluxes modelled during most nights were larger that those measured by EC or gap-filled from other EC measurements. Soil CO2 effluxes in the model were close to, but sometimes smaller than, those measured by automated surface chambers at SOA. Diurnal declines in CO2 exchange during the drought caused declines in annual NEP in the model, and in gap-filled EC measurements (model versus EC in g C m−2: 275 versus 367 ± 110 in 2001, 82 versus 144 ± 43 in 2002 and 23 versus 104 ± 31 in 2003). Lower modelled NEP was attributed to the larger modelled CO2 effluxes. Ecosys was then used to predict changes in aspen net biome productivity (NBP = NEP  C lost from disturbance) caused by 6-year versus 3-year recurring droughts during 100-year fire cycles under current climate versus climate change projected under the IPCC SRES A1B scenario. Although NBP was adversely affected during recurring 6-year droughts under current climate, it recovered quickly during non-drought years so that long-term NBP was maintained at 4 g C m−2 year−1. NBP rose by 10, 108 and 126 g C m−2 year−1 during the first, second and third centuries under climate change with recurring 3-year droughts, indicating a gradual rise in sink activity by boreal aspen. However recurring 6-year droughts during climate change caused recurring negative NBP (C losses), gradually depleting aspen C reserves and eventually causing dieback of the aspen overstory during the third century of climate change. This dieback was followed by a large decline in NBP.We conclude that NBP of boreal aspen will rise gradually under current projections of climate change, except under prolonged (e.g. 6 years) recurring droughts, which would eventually cause aspen to die back and substantial amounts of C to be lost.  相似文献   
10.
Hurricane disturbance has the potential to markedly affect coastal forest structure and ecosystem processes. This study focused on the impacts of Hurricane Katrina in Louisiana's Pearl River basin, which lies just west of Katrina's final landfall at the Louisiana–Mississippi border. Prior to landfall, composition and structure of bottomland hardwood forests in this region were studied with permanent forest inventory plots sampled in 1989, 1998, 2005 and following the storm in 2006. This enabled a direct comparison of forest structure and dynamics before and after the disturbance, including species-specific tree mortality and damage rates, biomass production, and differences among forest types having varied hydrologic regimes. Background tree mortality rate before Hurricane Katrina was 1.9%, while average annual mortality was 20.5% for the census interval including the disturbance. Change in live tree biomass estimated from allometric models demonstrated a shift from an average annual production of 3.5 Mg ha−1 before the disturbance, to an average loss of 77.6 Mg ha−1 from the storm. Damage associated with Hurricane Katrina varied significantly with tree species but not tree size. Flooded cypress-tupelo swamp forests sustained the least damage and frequently flooded bottomland hardwood forests sustained the highest damage. Hurricane disturbance influenced the structure and composition of these coastal forests through species-specific differences in damage and mortality rates, and varied impacts dependent on forest flooding regime.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号